Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Распад углеводов

    Первая стадия синтеза жирных кислот является в то же время одной иа последних стадий распада углеводов, поскольку ацетилкофермент А (ацетил-КоА), исходный продукт в биосинтезе жирных кислот, образуется в процессе метаболизма углеводов. [c.137]

    Щавелевоуксусная кислота НООС—С(ОН)==СН —СООН. Эта кислота является продуктом нормального обмена веществ и играет существенную роль в распаде углеводов (ср. цикл лимонной кислотых, стр. 413). Как было указано выше, она образуется при окислении яблочной кислоты. Эфир ш,авелевоуксусной кислоты очень легко получается в результате сложноэфирной конденсации эфиров щавелевой и уксусной кислот, конденсирующим средством служит алкоголят натрия  [c.408]


    АНАЭРОБНЫЙ РАСПАД УГЛЕВОДОВ [c.204]

    ПРОЦЕССЫ РАСПАДА УГЛЕВОДОВ [c.363]

    В результате аэробного и анаэробного распада углеводов дрожжами доставляется энергия и обеспечиваются процессы синтеза биомассы различными предшественниками. Из щавелево-уксусной и а-кетоглутаровой кислот в результате восстановительного аминирования и переаминирования образуются соответственно аспарагиновая и глутаминовая кислоты. Синтез этих двух аминокислот занимает главное место в синтезе белков из углеводов. [c.1051]

    Азотное питание. Дрожжи способны синтезировать все аминокислоты, входящие в состав нх белка, непосредственно нз неорганических азотистых соединений при использовании в качестве источника углерода органических соединений — промежуточных продуктов распада углеводов, которые образуются при дыхании и брожении. [c.201]

    Аэробное и анаэробное дыхание тесно связаны, и преобладание того или иного его типа зависит главным образом от наличия в среде кислорода. Общим для большинства организмов является аэробный путь распада углеводов. У зерна и клубней картофеля анаэробное дыхание усиливается при повышенных температурах и в конце периода хранения, когда активность окислительных ферментов понижена. Анаэробное дыхание может продолжаться до тех пор, пока вредные метаболиты не подавят жизнедеятельность организма. [c.43]

    Магний имеет большое биологическое значение, он входит в состав хлорофилла, участвует в процессе фотосинтеза, в образовании или распаде углеводов и жиров, в превращениях фосфорных соединений. Недостаток магния в почве как микроэлемента вызывает заболевания растений (хлороз, мраморность листьев и др.). При низких содержаниях его в кормах наблюдаются заболевания и у сельскохозяйственных животных. Магниевым микроудобрением служит доломитMg Oa- [c.299]

    Таким образом, для того, чтобы процесс распада органического вещества в живой клетке был наиболее энергетически выгодным, необходимо образование в ходе процесса максимально возможного количества молекул АТФ или восстановленных пиридиновых нуклеотидов. Известные нам процессы распада углеводов, несомненно, являются результатом биохимической эволюции — естественного отбора по эффективности использования энергии для жизненных процессов. Это и определяет высокую энергетическую целесообразность процессов распада углеводов. [c.364]


    Ферментативный анаэробный распад углеводов исследуют при инкубации тканевого гомогената или экстракта с субстратами гликолиза (гликогеном, глюкозой, а также с промежуточными продуктами гликолиза). О процессе судят по приросту конечного продукта анаэробного превращения углеводов — лактата или убыли субстратов. Отдельные этапы изучают при добавлении в инкубационную среду ингибиторов ферментов или удалении диализом кофакторов и коферментов, необходимых для определенных реакций процесса анаэробного превращения углеводов. [c.49]

    Гликолиз - один из важнейших процессов распада углеводов и образования энергии в виде макроэргических молекул АТФ. [c.78]

    Гликоген — основной субстрат анаэробного распада углеводов в скелетной мускулатуре. В задаче предлагается исследовать влияние добавления АДФ на интенсивность гликогенолиза. Об интенсивности гликогенолиза судят по убыли гликогена и по образованию молочной кислоты. [c.50]

    Строение и свойства углеводов, рассмотренные выше, позволяют понять их функции в живом организме. Будучи альдо- или кето-спиртами, т.е. уже частично окисленными органическими молекулами, углеводы легко вступают в реакции дальнейшего окисления. Вследствие этого основная функция углеводов - энергетическая углеводы различного строения являются основными поставщиками энергии и на их долю приходится более 50% всей вырабатываемой в организме энергии. В зависимости от того, какое вещество является акцептором электронов в ходе окисления, процессы окислительного распада углеводов делятся на анаэробные и аэробные (акцепторы электронов - различные химические субстраты в анаэробных процессах и кислород - в аэробных процессах). [c.77]

    Так, хорошо известно, например, что распад углеводов в животном организме (гликолиз) протекает через сложную последовательность реакций, в которой промежуточное образование фосфорных эфиров и их превращения играют центральную роль. Далее, некоторые фосфаты сахаров входят в фер(Ментные системы. Наконец, едва ли не самыми важными природными продуктами исключительного биологического значения, представляющими собою сложные эфиры углевода, являются нуклеиновые кислоты, роль которых в биосинтезе белка и передаче наследственных признаков общеизвестна. [c.77]

    В условиях аэробиоза распад углеводов до образования пировиноградной кислоты происходит так же, как и при анаэробиозе, но в отличие от него пировиноградная кислота полностью окисляется до диоксида углерода и воды в цикле трикарбоновых кислот — ЦТК (цикле Кребса, лимоннокислотном цикле). В этом цикле последовательно протекают окислительно-восстановительные реакции, в которых под действием специфических дегидрогеназ происходит перенос водорода на молекулярный кислород — конечный [c.206]

    Большое значение в разнообразных процессах обмена в-в имеет ферментативное Д. Существует два типа подобных р-ций простое Д. (обратимая р-ция) и окислительное Д., в к-ром происходит сначала Д., а затем дегидрирование субстрата. По последнему типу в организме животных и растений осуществляется ферментативное Д. пировиноградной и а-кетоглутаровой к-т-промежуточных продуктов распада углеводов, жиров и белков (см. Трикарбоновых кислот цикл). Широко распространено также ферментативное Д. аминокислот у бактерий и животных. [c.19]

    Почему в результате распада углеводов дрожжами доставляется энергия и обеспечиваются процессы синтеза биомассы  [c.1081]

    Гликолиз является эволюционно ранним процессом выработки энергии в организме в ходе распада углеводов и протекает в анаэробных условиях у микроорганизмов и при ограниченном снабжении кислородом у высших организмов. [c.78]

    Переход от анаэробного пути распада углеводов к аэробному - пиру-ватдегидрогеназная реакция [c.82]

    Как вырабатывается энергия в клетке в результате распада углеводов Частично АТФ, как основной макроэрг клетки, может образоваться путем субстратного фосфорилирования. Но главным процессом синтеза АТФ является окислительное фосфорилирование. [c.85]

    Доказательством верности теории Митчелла является то, что существование мембранного потенциала в митохондриях стало бесспорньгм, а также то, что ионофоры (валиномицин, грамицидин, динитрофенол) создают условия для свободного перемещения ионов Н , в результате исчезает протонный градиент, и синтез АТФ прекращается. Вещества, нарушающие градиент Н , называют разобщителями окислительного фосфорилирования. Количество АТФ, синтезируемое в процессе распада углеводов Поскольку окисление одной молекулы НАДН сопровождается синтезом трех молекул АТФ, а всего в ходе гликолиза, пируватдегидрогеназной реакции и реакций ЦТК образуется десять НАДН, то всего генерируется 30 молекул АТФ, а за счет окисления двух молекул ФАДН2 образуется еще четыре молекулы АТФ, т.е. всего 34 молекулы АТФ. К этому числу следует добавить две молекулы АТФ, синтезировавшихся в гликолизе, и две молекулы ГТФ, появившихся в ЦТК за счет субстратного фосфорилирования. [c.89]


    Реакции рекомбинации феноксильных радикалов приводят к образованию новых С-С- и С-О-связей в структуре лигнина, что затрудняет делигнификацию. Рекомбинация же с участием пероксильных радикалов не может дать стабильных связей. Это различие в характере взаимодействия лигнина с кислородом при избытке и недостатке последнего приводит к тому, что присутствующий в древесине и в варочном растворе кислород при обычных щелочных варках может послужить причиной конденсации фрагментов лигнина, в том числе и с участием продуктов окислительного распада углеводов. Не исключается возможность радикальной прививки лигнина к полисахаридам. Поэтому, как уже указывалось ранее, роль вводимых при делигнификации в щелочную среду химических реагентов заключается также в ингибировании окислительных процессов. [c.492]

    У человека и животных на всех стадиях синтеза и распада углеводов регуляция углеводного обмена осуществляется при участии ЦНС и гормонов. [c.359]

    Эти ферменты управляют процессами распада углеводов в мозговой и нервной тканях, а также при брожении различных веществ Витамин А в теле животного образуется из каротина под влиянием ферментов, т е в данном случае витамин образуется в результате ферментативной реакции [c.7]

    Эти ферменты управляют процессами распада углеводов в мозговой и нервной тканях, а также при брожении различных веществ. [c.7]

    С. В. Лебедев и И. А. Виноградов-Волжинский 111) сообщают о проведенных в 1911 г. опытах Л. Уббелоде и А. Воронина, Наблюдавших реакции каталитического крекинга при нагревании нефтяного масла с фуллеровой землей до температуры около 200 °С, и собственных исследованиях, в которых установили, что распад диамиленов под влиянием активированного флоридина начинается уже при 65—70 °С, заметно протекает при 90, а при 165—170 °С происходит интенсивный распад углеводо])одов. С. В. Лебедев и Г. Г. Коблянский [121 показали, что полимерные формы изобутилена под влиянием флоридина заметно распадаются уже при 130 °С. С. В. Лебедев и И. А. Лившиц [131 наблюдали распад триизобутшсена даже нри 50 °С в присутствии того же активированного флоридина. Низкотемпературный [c.154]

    Открытие пути прямого окисления углеводов, или, как его называют, пентозофосфатного цикла, принадлежит О. Варбургу, Ф. Липману, Ф. Дикенсу и В.А. Энгельгарду. Расхождение путей окисления углеводов—классического (цикл трикарбоновых кислот, или цикл Кребса) и пентозофосфатного—начинается со стадии образования гексозомонофосфата. Если глюкозо-6-фосфат изомеризуется во фруктозо-6-фосфат, который фосфорилируется второй раз и превращается во фруктозо-1,6-бисфосфат, то в этом случае дальнейший распад углеводов происходит по обычному гликолитическому пути с образованием пировиноградной кислоты, которая, окисляясь до ацетил-КоА, затем сгорает в цикле Кребса. [c.353]

    Очень важную роль играет степень очистки гидролизатов растительного сырья [39]. Поскольку с чистотой раствора непосредственно связана стабильность работы катализатора, а очистка является весьма дорогостоящим процессом, оптимум должен определяться по экономическому критерию. Для гидролизатов, получаемых с применением концентрированных кислот, т. е. сравнительно мало загрязненных продуктами распада углеводов, достаточной считается очистка адсорбентом (активированный уголь, коллакти-вит) и анионитами. При этом катализатор совершает в среднем 3 цикла, прежде чем выводится на регенерацию. Влияние степени очистки сырья на гидрогенолиз со стационарным катализатором пока не исследовалось, хотя для стационарного катализатора чистота сырья еще более важна, чем для суспендированного. [c.127]

    Превращение белков в организме. В организмах животных и человека под влиянием ферментов (пепсина, трипси--на, эрепсина и др.) происходит гидролиз белков. В результате этого образуются аминокислоты, которые всасываются ворсинками кишечника в кровь и используются для образования белков, специфических данному организму. Синтез белков идет с поглощением энергии. Эту энергию доставляют молекулы АТФ. (Повторите из учебника Общая биология 42.) В организме одновременно с синтезом белков непрерывно происходит и полное их разрушение, вначале до аминокислот, а затем до оксида углерода (IV), аммиака, мочевины и воды. При этих процессах выделяется энергия, но Б меньшем количестве, чем при распаде углеводов и жиров. [c.21]

    Напротив, окисление гексофуранозидов происходит гораздо сложнее поскольку первоначальный продукт окисления, содержащий группировку малондиальдегида, может подвергаться дальнейшему окислению. Последнее приводит в конечном счете к поглощению 6 -молей ШО4 № полному. распаду углевода с выделением спирта — агликона, четырех-молей мура.вьиной кислоты, одного моля углекислоты и одно1Го молж формальдегида (см. стр. 90). [c.89]

    Основными путями распада углеводов являются гликолиз и ЦТК, но наряду с ними существуют и другие пути метаболизма углеводов. Один из них - распад глюкозо-б-фосфата до СО2 и пентоз, поэтому этот путь называют пентозофосфатным. Поскольку глюкоза является основной гексозой, распадающейся по пути гликолиза, где из нее образуется глюкозо-6-фосфат, то этот же путь получил название гексозомонофос-фатного шунта. [c.90]

    О. Варбургу в 1935 г. при изучении окислительного распада углеводов впервые удалось получить в кристаллическом состоянии кофермент глюко-зо-6-фосфатдегидрогеназы. Было также установлено наличие в его составе амида никотиновой кислоты, В дальнейшем оказалось, что никотинамид является компонентом коферментов ряда ферментативных систем, участвующих во многих окислительно-восстановительных реакциях организма. Последующий период исследований ферментов ознаменовался открытием больщого числа коферментов, содержащих в своем составе те или иные витамины. Например, никотинамид — антипеллагрический витамин, входящий в состав кофермента никотинамидадениндинуклеотида  [c.94]

    Яблочная (гидроксибутавдиовая) кислота НООСС И(ОН)СН,СООН. Содержит один асимметрический атом углерода, поэтому возможно существование ее в виде пары энантиомеров. В природе встречается Ь-(-)-яблочная кислота (т. пл. 100 С), она содержится в ягодах н фруктах, особенно много ее в ягодах рябины и барбариса, которые используются для получения яблочной кислоты. Ь-Яблочная кислота — один из продуктов распада углеводов в живых организмах. [c.323]

    Пировиноградная кислота играет важную роль в процессах обмена веществ, являясь промежуточным продуктом распада углеводов Соли и чфнры пировиноградной кислоты называются п п р у в а т а-м и. Ацетоуксусная кислота — один из продуктов биологического расщепления жиров. У больных сахарным диабетом в результате нарушения обмена вещеегв наблюдается повышенное содержание в моче ацетоуксусной кислоты н продукта ее распада — ацетона, так называемых кетоновых тел  [c.332]


Смотреть страницы где упоминается термин Распад углеводов: [c.1045]    [c.19]    [c.207]    [c.375]    [c.315]    [c.77]    [c.119]    [c.655]   
Химия углеводов (1967) -- [ c.363 ]




ПОИСК







© 2025 chem21.info Реклама на сайте