Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углеводы свойствами

    По своим физико-химическим свойствам полисахариды, не обладающие свойствами сахаров, во многом существенно различаются между собой. Так, в отношении растворимости существуют все градации от хорошо растворимых в теплой воде инулина и гликогена до совершенно нерастворимой целлюлозы. Некоторые полисахариды этой группы, например крахмал и инулин, при соответствующих условиях могут выделяться в виде сфероидальных кристаллических частиц большая часть этих углеводов (за исключением гликогена) и.меет кристаллическую структуру. [c.453]


    Важно установить степень влияния на моторные свойства бензинов жидкофазного каталитического крекинга таких факторов, как температура, расход катализатора и время контакта. Как уже было показано, при крекинге очищенного газойля тяжелой балаханской нефти в присутствии активированного гумбрина, расход которого колебался от 15 до 120 % на сырье, при температурах в интервале 350—450 °С и времени контакта 15—60 мин изменялся и химический состав получающегося беп тн 1 при общей тенденции медленного уменьшения содержания нафтенов и )оста количества парафинов при едва заметном возрастании содержания ароматических углеводо- [c.150]

    Огромна роль углеводов в процессах, связанных с жизнедеятельностью живых организмов. Установлено, что они входят в состав нуклеотидов, из которых построены нуклеиновые кислоты. Эти кислоты, как известно, осуществляют биосинтез белка и передачу наследственных свойств. [c.231]

    В отличие от слов белки или углеводы слово жиры часто используется в обиходе, и ему иногда придается неприятный смысловой оттенок. О человеке с избыточным весом можно услышать, что он слишком жирный . Жиры - один из основных видов биомолекул, имеющих свои специфические свойства и функции так же, как и углеводы. [c.247]

    Данные о составе и строении непредельных углеводородов бензинов представляют особый интерес, так как именно эти. углеводо роды определяют некоторые важнейшие эксплуатационные свойства бензинов. [c.15]

    Температура застывания всех остатков высокая. Исключением является исходный КО, который имеет отрицательную температуру застывания - 6°С. Все вышеперечисленные свойства исследуемых тяжелых остатков обусловлены природой исходного сырья и глубиной отбора газойлевых фракций. После отбора вакуумных газойлей с концом кипения 500°С в остатках концентрируются асфальтены и смолы, количество которых в сумме достигает 40...50%. В углеводо- [c.80]

    Особенно перспективны благодаря комплексу физикохимических свойств хлорированные и фторированные углеводо- [c.32]

    В книге рассматривается один из важных аспектов химической переработки углеводов — их гидрирование и гидрогенолиз, а также содержатся основные сведения по свойствам полиолов и их многообразному применению. В последние годы в нашей стране и в некоторых зарубежных странах проведены исследования ряда эффективных катализаторов гидрирования и гидрогеиолиза углеводов, установлены оптимальные условия протекания на них химических процессов, предложены различные механизмы этих реакций, новая аппаратура для их проведения. [c.6]


    Основными составляющими сжиженных газов, обусловливающими особенности и эффективность их применения, являются различные углеводо.роды (метан, этан, пропан, пропилен, Н-бутан, нзобутан и др.), свойства которых приведены в табл. 10. [c.22]

    Меркаптаны (тиолы) имеют строение RSH, где R — углеводо — родЕ1ый заместитель всех типов (алканов, цикланов, аренов, гибридных) разной молекулярной массы. Температура кипения индивидуальных алкилмеркаптанов С, — С составляет при атмосферном давлении 6— 140 °С. Они обладают сильно неприятным запахом. Это свойство их используется в практике газоснабжения городов и сел для предупреждения о неисправности газовой линии. В качестве одо[)анта бытовых газов используется этилмеркаптан. [c.69]

    Сульфиды и оксиды молибдена и вольфрама с промоторами являются бифункциональными катализаторами (с п — и р — прово — дикостями) они активны как в реакциях гидрирования-дегидри— рования (гомолитических), так и в гетеролитических реакциях гидрогенолиза гетероатомных углеводородов нефтяного сырья. Однако каталитическая активность Мо и W, обусловливаемая их дырочной проводимостью, недостаточна для разрыва углерод — угл зродных связей. Поэтому для осуществления реакций крекинга углэводородов необходимо наличие кислотного компонента. Следовательно, катализаторы процессов гидрокрекинга являются по существу минимум трифункциональными, а селективного гидрокрекинга — тетрафункциональными, если учесть их молекулярно — ситовые свойства. Кроме того, когда кислотный компонент в катализаторах гидрокрекинга представлен цеолитсодержащим алюмосиликатом, следует учесть также специфические крекирующие свойства составляющих кислотного компонента. Так, на алюмоси — ЛИР ате — крупнопористом носителе — в основном проходят реакции первичного неглубокого крекинга высокомолекулярных углеводо — ро ов сырья, в то время как на цеолите — реакции последующего бо/ ее глубокого крекинга — с изомеризацией среднемолекулярных углеводородов. Таким образом, катализаторы гидрокрекинга можно отвести к полифункциональным. [c.227]

    Атомы или группы атомов, замещающие водород в углеводо- одной основе, образуют функциональные или характе-истические г р у п п ы, обусловливающие общие химиче-кие свойства неществ, принадлежащих к одному и тому же лассу производных углеводородов. Ниже приведены общие фор- улы н пазвання некоторых классов органических соединений, в скобках — формулы и названия функциональных групп). [c.465]

    Аминосахара. Прн гидролизе хитнна Леддерхозс уже много лет тому назад выделил азотсодержащее вещество, по всем свойствам близкое углеводам. Оно было названо г л ю к о з а м и н о м, или х и т о з а м и-н о м. Принятая для него структурная формула основана как на результатах анализа (СбН1зО,г,Н), так и на том факте, что это вепдество образует с уксуснокислым фенилгидразином тот же самый озазон, что и глюкоза или манноза. Поэтому глюкозамин следует рассматривать как [c.443]

    Прочность связи водорода с поверхностью зависит не только от свойств катализатора гидрогенизации, но в значительной степени и от pH среды. Д. В. Сокольский [2, с. 447] указывает, что (В щелочных средах водород прочнее связан с поверхностью, а воспроизводство водорода на ней чрезвычайно замедлено в кислых средах связь водорода с поверхностью ослабевает. Поэтому оптимальным pH для гидрогеиолиза углеводов являются 7,5—8,5 при перещелачивании раствора происходит водородное голодание, и накопление молочной и других кислот быстро снижает pH до уровня, который не лимитирует скорости воспроизводства активного водорода на поверхности катализатора. [c.81]

    При действии минеральных кислот полисахариды, не обладающие свойствами сахаров, распадаются на монозы. Чаще всего конечным продуктом полного гидролиза является О-глюкоза крахмал, гликоген, целлюлоза и лихенин при полном кислотном расщеплении образуют лишь виноградный сахар. Из других сложных углеводов в аналогичных условиях образуются манноза, галактоза, фруктоза или пентозы — арабиноза, ксилоза, фукоза. Многие относящиеся к этой группе несахароподобные полисахариды получили свои названия по конечным продуктам гидролитического расщепления, — например маннаны, галактаны, арабаны. [c.453]

    Большое значение для экономичности процесса гидрогеиолиза углеводов имеет повторное использование катализатора. Возможность его повторного использования определяется главным образом изменением его каталитических и механических свойств в ходе реакции. Контроль за процессом по потенциалу катализатора, проведение реакции при оптимальном смещении потенциала (для никеля на кизельгуре 200 мВ [33]) во многом способствует его стабильной работе. Если смещение потенциала превышает оптимальную величину, нарушается селективность процесса (образуются кислые продукты, отравляющие катализатор). Чем больше смещение потенциала в анодную сторону, тем сильнее обезводо-роживается катализатор и интенсивнее идет процесс окисления поверхности никеля с образованием его гидроокиси [45]. Как указывает Л. X. Фрейдлин [45], все факторы, благоприятствующие созданию Б сфере реакции избытка активного водорода над его расходом, должны способствовать устойчивости катализатора сюда относятся повышение давления водорода, снижение температуры реакции и концентрации гидрируемого соединения в системе, подбор растворителя и промотирование, способствующее ускорению активирования водорода, а также факторы, уменьшающие адсорбцию компонентов реакции. [c.120]


    В растениях, например в картофеле, содержатся энзиматические системы, способные даже in vitro превращать глюкозо-1-фосфорную кислоту в такие углеводы, которые после метилирования и расщепления дают те же осколки, что и природный крахмал, или амилоза и амилопектин. По другим свойствам эти углеводы также очень близки амилозе и амилопектину (Хейнс, Хеуорс). С помощью так называемого Р-энзима из картофеля можно получить амилозу, а при большом избытке Q-энзима (из картофеля) — амилопектин Q-энзим может вызывать также превращение амилозы в амилопектин. [c.456]

    Более длительной работе никеля на кизельгуре препятствует малая механическая прочность кизельгура вследствие его химического взаимодействия с водой при высоких температурах и высоких pH среды. Поэтому представляют интерес работы по применению для гидрогеиолиза катализаторов на носителях, устойчивых к воздействию реакционной среды, — на окиси алюминия алюминатах кальция [47], а также сплавных порошкообразных медно-алюминиевых катализаторов [42]. Такие катализаторьг должны быть, очевидно, стабильнее никеля на кизельгуре их активность и селективность в процессе гидрогеиолиза углеводов может значительно отличаться от соответствующих свойств никеля на кизельгуре, так как применение окиси алюминия в качестве носителя значительно увеличивает прочность связи водорода с поверхностью [48]. Следует, однако, заметить, что большая твердость никелевого катализатора на окиси алюминия по сравнению-с никелем на кизельгуре может вызвать значительную эрозию оборудования, трубопроводов и арматуры, а повышенная плотность этих катализаторов затрудняет их использование в суспендированном виде необходимы работы по усовершенствованию таких катализаторов. [c.121]

    Общим для всех видов жидкого сырья для лронзвод стиа нефтяного углерода является большое содержание в нем углеводо-родов, склонных к образованию ассоциатов, что может быть оценено отношением Н С, приведенным в табл. 19. Тал [ же приводятся другие физико-химические свойства нефтяных остатков. [c.224]

    Полисахариды. Эти углеводы во многом отличаются от моно- и дисахаридов — не имеют сладкого вкуса, в большинстве нерастворимы в воде, они представляют собой сложные высокомолекулярные соединения, которые под каталитическим влиянием кислот или ферментов подвергаются гидролизу с образованием более простых полисахаридов, затем дисахаридов и, в конечном итоге, множества (сотен и тысяч) молекул моносахаридов. Важнейшие представители полисахаридов — крахмал и целлюлоза (клетчатка). Их молекулы построены из звеньев -СбНюОб-, являющихся остатками шестичленных циклических форм молекул глюкозы, потерявших молекулу воды поэтому состав и крахмала, и целлюлозы выражается общей формулой (СеНюОа) . Различие же в свойствах этих полисахаридов обусловлено пространственной изомерией образующих их моно-сахаридных молекул крахмал построен из звеньев а-, а целлюлоза — /3-формы глюкозы. [c.582]

    С целью выяснения влияния строения углеводо )одов, соответ-ствуюцих по количеству углеводородных атомов углеводородам сма-304HIJX масел, на их свойства синтезированы и исследованы множество ыодельш.1Х углеводородов. [c.97]

    Если мы зададимся вопросом о том, насколько тот или иной растворитель способен с достаточной четкостью удалять нежелательные компоненты масла, не затрагивая другие, желательные углеводороды, то можно убедиться, что это свойство, называемое селективностью растворителя, проявляется каждым растворителем не в одинаковой мере. Так, например, Тер-Мейлен, экстрагируя анилином и нитробензолом нежелательные углеводо- [c.74]

    Подвергая чистую целлюлозу длительному нагреву под давлением с водой, содержащей щелочь, Берль обнаружил образование 1ИЗ клетчатки битума. По мере увеличения количества щелочи во зрастало содержание битума и при некотором оптимальном соотношении между клетчаткой и щелочью (раствор едкого натра, доломит) наступало полное превращение углеводов в вязкую асфальтообразную массу, имеющую ряд свойств, общих со свойствами природного асфальта. Эта асфальтоподобная масса, называемая Берлем протопродукт , и является по его мнению веществом, ИЗ. которого путем дальнейших превращений образовалась нефть. [c.193]

    В 1977 г. группа английских ученых под руководством Стод-дарта предложила использовать для синтеза новых акцепторных соединений производные сахаров [140, 141]. Углеводы и их производные достаточно обогащены замещенными бисметилендиокси-группами и удобны для образования 18-краун-6-эфиров. Кроме того, углеводы можно рассматривать как сравнительно недорогие источники хиральных соединений обычно они проявляют хорошие функциональные свойства, [c.273]

    Развитие представлений о донорно-акцепторном комплексооб-разовании (комплексы типа хозяин — гость )—хороший пример давнего стремления строить аналоги ферментов на основе краун-эфиров по принципу ключ — замок . Естественно, соответствие размеров, объемов и электронных свойств связывающих частей донора ( гость ) и акцептора ( хозяин ) —необходимое условие сильного связывания. Поэтому углеводы и их производные — своего рода подарок для хирального синтеза, так как на их основе может быть получен структурный остов соединений неуглеводной природы [142J. В ближайшие годы эти идеи должны получить более широкое распространение и развитие. [c.275]

    Согласно современным представлениям протоплазму следует рассматривать как сложную коллоидную систему, обладающую всеми свойствами и признаками макромолекул в растворе. Исследования, проведенные за последние годы, убедительно показали, что протоплазма построена по типу сложных коацерватов. Как уже отмечалось, белки протоплазмы представляют собой сложные соединения более простых белков с нуклеиновыми кислотами, углеводами, высшими жирными кислотами и т. д. Именно при соединении с белком эти вещества образуют сложные коацерваты, нз которых большое значение имеют так называемые ВЕ1утриком-плексные коацерваты. [c.401]

    ПИРОВИНОГРАДНАЯ КИСЛОТА СН3СОСООН — бесцветная жидкость с запахом уксусной кислоты, т. пл. 13,6° С смешивается с водой, спиртом, эфиром во всех отношениях. П. к. проявляет общие свойства а-кетокислот, играет важную роль в процессах обмена веществ, служит переходным веществом в биосинтезе белков из углеводов и наоборот. П. к. содержится во всех тканях организма. Увеличение количества П. к. в организме вызывает авитаминоз Вх и ряд других заболеваний. [c.191]

    СУЛЬФИТНЫЙ ЩЕЛОК — раствор, образующийся при обработке целлюлозы гидросульфитом кальция Са (Н30з)2. Растворенные в С. щ. вещества — это в основном углеводы и соли лигносульфоновых кислот. Из С. щ. биохимической переработкой получают этиловый спирт, белковые дрожжи, антибиотики, органические кислоты, растворители, многоатомные спирты химической переработкой — ванилин, фенолы, ароматические кислоты. Упаренный после биохимической переработки С. щ., т. наз. сульфитно-спиртовую барду, применяют в качестве клеящего, пластифицирующего, диспергирующего и дубящего средств. При переработке 1 т целлюлозы образуется 8—9 м С. щ., из которого можно получить 100—110 кг белковых кормовых дрожжей или 80—100 л этилового спирта и 35—40 кг дрожжей, а также 1—1,2 т концентрата сульфитно-спирто-вой барды. При хлорировании обессахаренного С. щ. образуется препарат, обладающий сильными антисептическими, дезинсектирующими и гербицидными свойствами. [c.241]


Смотреть страницы где упоминается термин Углеводы свойствами: [c.500]    [c.500]    [c.430]    [c.133]    [c.278]    [c.322]    [c.214]    [c.198]    [c.98]    [c.145]    [c.93]    [c.541]    [c.414]    [c.983]    [c.58]    [c.125]    [c.205]    [c.380]    [c.19]    [c.134]   
Реакции органических соединений (1939) -- [ c.233 ]




ПОИСК







© 2024 chem21.info Реклама на сайте