Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ванадий железом

    Механизм отравления и промотирования катализатора металлами. В литературе существует мнение, что металлы могут влиять на качество катализатора двояко. Такие металлы, как никель, ванадий, железо и другие, снижают активность и избирательность катализатора [45, 64, 202, 213] щелочные металлы, например натрий, уменьшают только активность катализатора не изменяя избирательности [45]. [c.171]


    Эффективность этих методов в значительной степени зависит от типа применяемого катализатора. В качестве катализаторов используют в основном оксиды различных металлов ванадия, железа, хрома, меди, а также их композиции. [c.62]

    В отличие от щелочных металлов, никель, ванадий, железо, хром и другие тяжелые металлы не изменяют кислотности катализатора. Не происходит существенных изменений и в пористой структуре. Исследователи [45, 54, 132] пришли к выводу, что при отложении тяжелых металлов физические свойства алюмосиликата не меняются, а образуется поверхностный слой, обладающий совершенно иными каталитическими свойствами. В результате металлы оказывают существенное влияние на активность катализа- [c.139]

    Отравление обоих видов рассматривается в работе [45], где изучалось влияние различных концентраций никеля, ванадия, железа, меди, свинца и натрия на результаты крекинга и качество катализатора. Металлы наносили на катализатор пропиткой его водными растворами солей. Ванадий вводили в виде метаванадата аммония, а натрий — в виде ацетата. Остальные металлы вводили в виде нитратов. Чтобы избежать попадания в катализатор посторонних примесей растворы солей металлов приготовляли в двукратно дистиллированной воде, а все сосуды перед употреблением тщательно очищали, промывали и споласкивали также двукратно дистиллированной водой. Пропитанные образцы высушивали при 90 °С, а затем прокаливали в воздухе при 600 °С в течение 2 ч для разложения солей металлов до окислов и полного удаления летучих веществ. Выходы продуктов крекинга в стандартных условиях на полученных образцах катализатора приведены в табл. 48 [45]. Там же приводятся данные о кислотности, удельной поверхности и поровой характеристике этих образцов. [c.171]

    Из табл. 48 видно, что никель, ванадий, железо, медь, свинец уменьшают активность катализатора и избирательность уменьшается выход бензина, увеличивается выход газа и кокса. При этом кислотность катализатора не изменяется. Данных о влиянии металлов на удельную поверхность и поровую характеристику катализатора в этой работе очень мало. [c.171]

    Деасфальтизация с применением селективных углеводородных растворителей [103 обеспечивает практически полное удаление асфальтенов и большей части содержащихся в остатке металлов (никель,ванадий, железо. натрий) без какой-либо деструкции сырья. Получаемые после деметаллизации и деасфальтизации сернистых и высокосернистых остатков продукты требуют обязательного гидрообессеривания. В отличие от прямого гидрообессеривания остатков предварительная де-асфальтизация селективными растворителями позволяет осуществлять последующее гидрообессеривание деасфальтизатов в смеси с вакуумными газойлями при значительно более низком давлении водорода, чем гидрообессеривание мазута II,I2D.  [c.62]


    Составные части золы, например содержание ванадия, железа, кремния, определяют по ГОСТ 15833—70. Цвет золы нефтяного кокса, в зависимости от компонентного состава,— от бледно-желтого до буроватого. [c.145]

    Деасфальтизация минеральных масел с помощью СНГ. Сырые нефти состоят из большого числа самостоятельных химических компонентов, большинство из которых являются углеводородами. Некоторые из них содержат серу, кислород, азот, многие металлы, прежде всего ванадий, железо, натрий и никель. Углеводороды в основном состоят из парафинов и изопарафинов с примесью небольших количеств нафтенов и ароматических углеводородов в различном сочетании. Более тяжелые компоненты удерживаются в виде суспензии более легкими составляющими (в основном парафинами). Разделение легких и тяжелых компонентов нефти осуществляют в основном фракционной дистилляцией. [c.363]

    Элементный состав битумов следующий (%) 80—85 углерода 8—11,5 водорода 0,2—4 кислорода 0,5—7 серы 0,2—0,5 азота а также металлы (никель, ванадий, железо, натрий). Они представляют собой сложную коллоидную систему, состоящую из асфальтенов, высокомолекулярных смол и масел асфальтены придают твердость и высокую температуру размягчения смолы повышают цементирующие свойства и эластичность масла являются разжижающей средой, в которой растворяются смолы и набухают асфальтены. [c.397]

    Большое значение имеет также удаление из сырья тяжелых металлов (никель, ванадий, железо), содержащихся в виде металлорганических соединений. Указанные металлы отлагаются на катализаторе и снижают его активность. Разработан ряд технологий, позволяющих существенно (на 80-90%) снизить концентрацию тяжелых металлов в сырье гидрокрекинга. Наиболее эффективным методом является предварительное гидрогенизационное облагораживание. [c.258]

    В данной статье рассматривается оценка сходимости и воспроизводимости прямого спектрального метода определения ванадия, железа и кремния в нефтяных коксах. [c.119]

    Ключевые слова нефтяной кокс, спектральный межлабораторный анализ, ванадий, железо, кремний, точностные характеристики. [c.166]

    Свойства металла (( — температура, °С) Единица измерения Титан Ванадий Железо Цирконий Ниобий Молибден Вольфрам [c.183]

    Ванадий Железо Золото Кобальт Марганец Медь Молибден Мышьяк Никель Олово Свинец Серебро Сульфаты  [c.614]

    Палладий резко снижает свою активность в ходе процесса. Высокой активностью обладают оксиды марганца, ванадия, железа, хрома, меди и кобальта [56]. [c.62]

    Исследование влияния катионов показало, что наибольшие помехи при определении в щелочном растворе встречаются со стороны хрома, марганца, ванадия, железа. Спектр поглощения пере-кисного соединения хрома перекрывает спектр соединения урана, поэтому хром должен быть удален любым удобным способом. Мешающее влияние марганца сложно и вызывается совокупностью причин адсорбцией урана коллоидальной перекисью марганца и каталитическим разложением перекиси. [c.115]

    Для устранения мешающего влияния некоторых элементов (ванадий, железо, медь и др.), частично адсорбирующихся осадком, [c.266]

    Так, меркаптаны из нефтяных фракций удаляют с помощью сили-казоля, прокаленного с солями железа или меди, содержащего В работе [ ] в качестве катализатора предлагается использовать сульфированный или карбоксилированный порфирин кобальта или ванадия. В патента США [2] в качестве катализатора использован твердый катализатор - фталоцианин переходного металла - кобальта, ванадия, железа, никеля - на носителе окиси или гидроокиси щелочного металла. [c.39]

    Однако из всего многообразия изучешхых систем в конечном итоге отдается предпочтение в настоящее время значительно меньшему числу элементов и их сочетанию - это кобальт, никель, молибден, реже вольфрам, платина, ванадий, железо. Выбор подобных элементов определяется многими факторами, положительно характеризующими их мак с позиций их электронной структуры, так и свойств их солей и соединений, определяющих и технологичность операций создания катализатора, и применимость в практике созданной каталитической системы. Итак, круг элементов, используемых в синтезе катализатора гидрообессеривания нефтяных остатков, значительно сузился. [c.94]

    Первоначально, перед самым первым рабочим пробегом, установка загружается свежим катализатором, имеющим активность 35—38 единиц. 1Под влиянием частой регенерации катализатора, контактирования о с перегретым водяным паром, загрязнения продуктами коррозии трубопроводов и аппаратов и отравления примесями (соединения никеля, ванадия, железа и др.), содержа- [c.84]

    Как показала практика эксплуатации заводской установки гудрезид, при крекинге легкого мазута (удельный вес около 0,893, суммарное содержание никеля, ванадия, железа 0,002%, содержание кокса по Рамсботтому 3% вес.) образуется приблизительно 40- 43% вес. дебутанизированного бензина, 8—10% вес. газа (Сз и легче), 8—9,5% вес. фракции С4 и 6—8% вес. кокса. Выход легкого и тяжелого каталитических газойлей составляет около 31% вес., а водорода 19—26 м на 1 jtt жидкого мазута. Получаемый при этом бензин (без фракции С4 и добавки ТЭС) имеет октановое число 79,1—79,9 и 88,4—93,0 соответственно по моторному и исследовагельскоАгу методам. Содержание серы в бензине [c.245]


    Имеются сведения [149], что синтетическпе (не природные) тетрафепилпорфирины никеля, ванадия, железа и меди могут возгоняться при пониженном давлении без разложения. Теория летучести подтверждается экспериментами по возгонке металл-порфириновых соединений при температурах порядка 220— 300 С [150]. [c.46]

    В практике применяются колонны противоточного типа. Исходное сырье вводится сверху колонны, а пропан — снизу. Температурные интервалы — от 37,8 до 54,5 С внизу колонны и от 65,6 до 82° С вверху ее. На один объем исходного сырья расходуется от 4 до 9 объемов пропана. Часто депарафинизация следует за деасфальтизацией в этом случае пропановый раствор охлаждают До заданной температуры. Иногда применяется двухстадпйная операция для отделения смол от асфальтов. После сепарации асфальтов на первой стадии масло, деасфальтизированное пропаном, в дальнейшем разбавляется пропаном (200% от начального остатка), и во второй стадии выделяется смоляная фракция [119]. При деасфальтизации остаточных дистиллятов для получения исходного сырья каталитического крекинга значительно снижается содержание солей ванадия, железа и никеля [120, 122]. [c.290]

    Существует мнение [45, 213], что в концентрациях менее 0,3 вес. % никель более вреден, чем другие металлы, но при более высоких концентрациях его действие соизмеримо с отравляющим эффектом ванадия, железа и меди. На рис. 67 приведены данные [45] о влиянии на активность и закоксовывание катализатора различных металлов. Авторы [45] считают, что отравляющее действие металлов, по-видимому, снижается в таком порядке никель> >железо>ванадий>медь>свинец. Другие исследователи предлагают следующий порядок никель>медь>железо>ванадий они даже приводят количественные соотношеия силы воздействия этих металлов никель 1,0 медь 1,0 железо 0,55 ванадий 0,091 [214]. При увеличении коксового фактора количественные соотношения несколько возрастают железо 0,66 ванадий 0,61 при увеличении выхода газа железо 0,66 ванадия 0,106. [c.155]

    Сильно дегидрирующие металлы (никель, медь, кобальт) даже при ничтожном их содержании в катализаторе приводят к резкому увеличению коксоотложения вследствие повышенного образования непредельных углеводородов. Слабодегидрирующие металлы (ванадий, хром, молибден, железо) при небольшом их содержании в катализаторе (до 0,01 вес. %) образуют меньше кокса, чем исходный катализатор. При большем содержании металла в катализаторе коксообразование увеличивается. При содержании тяжелых металлов в катализаторе более 0,03—0,05 вес. % характер их влияния на изменение времени, необходимого для отложения 2% кокса, одинаков. По уменьшению количества образующегося кокса исследованные металлы располагаются в следующем порядке никель, медь>кобальт> молибден, ванадий > железо, хром>сви-нец>бериллий, магний, кальций, стронций>литий>натрий>ка-лий>цезий. Тормозящее влияние щелочных металлов возрастает в соответствии с увеличением их основности [257]. [c.176]

    Катализаторы, используемые в окислительных процессах, весьма разнообразны. ПрИлМеняются металлические катализаторы — платина и другие металлы группы платины па соответствующих носителях, окислы металлов — окислы ванадия, железа, хрома, молибдена, никеля и других металлов, промотировапные различными соединениями и сформованные в виде таблеток, гранул, сфероидальных зерен и т. н. В настоящее время стремятся металлические катализаторы заменить окиспыми. [c.138]

    Необходимо подчеркнуть, что на такие товарные показатели, как сера, зольность, ванадий, железо и кремний прокалка в камерных печах практически не влияет. Все определяется характеристикой сырья - т.е. зеленых коксов, поставляемых заводу на условиях процессинга. К сожалению, выбор кокса на российском рынке существенно сузился за последние годы. Объем производства кокса, например, на Волгоградском НПЗ снизился (а это единственный в Европейской части России поставщик среднесернистого сырья). Да и уровень серы, зачастую, превышает 1,5%, достигая 1,7 - 1,8%. Для поддержания необходимого уровня серы приходится привлекать дорогой Красноводский кокс. [c.43]

    Определение массовой доли ванадия, железа и кремния является обязательной частью контроля качества нефтяных коксов. Рекоыевдуе-мый ГОСТом 22898-78 колориметрический метод определения указанных элементов в нефтяных коксах предусматривает оэоленне коксов, что вызывает потери легколетучих соединений ванадия и никеля. Для определения микроэлементов непосредственно в нефтяных коксах в БашНИИНП разработан более экспрессный спектральный метод il. [c.119]

    В результате обработки межлабораторных цяннмт на ЭБМ с помощью машинной программы расчета показателей точности методов испытаний нефтепродуктов, приведенной в "Методике определения показателей точности методов испытания нефти и нефтепродуктов", установлены точностные показатели (теьбл.З), внесенные в стандарт првдпржатия--аттестат на метод спектрального определения ванадия,железа и кремния в нефтяных коксах. [c.122]

    Приведены результаты метрологической аттестации методики прямого спектрального определения ванадия, железа и кремния в нефтяной коксе на уровне мажлабораторного эксперимента. На основании межлабораторных определений микроэлементов в коксах установлены точностные характеристики метода (сходимость и воспроизводимость) и внесены в аттестат предприятия.Илл.I,библ.2,табл.З. [c.166]

    Органическая часть сернокислотных отходов состоит из углеводородов, эфиров, спиртов, альдегидов, кетонов сульфо- и карбоновых кислот, сульфонов и других сернистых соединений, солей азотистых оснований, смол, асфальтенов, карбенов и карбоидов [5]. В состав некоторых видов сернокислотных отходов входят также различные металлы (медь, никель, ванадий, железо и др.) в виде продуктов коррозии и металлоорганических соединений. [c.40]

    Редуктор применяют при восстановлении солей титана, ванадия, железа, олова, молибдена, вольфрама, урана и других до низших стгпеней валентности. 25 мл 0,1 н. раствора восстанавливаемого вещества пропускают через редуктор 4—6 мин. Недопустимо присутствие азотной КИСЛ01Ы. Применяют солянокислые или сернокислые растворы восстанавливаемых солей. Пропущенный через редуктор раствор восстановленного металла затем титруют раствором подходящего окислителя. [c.393]

    Битумы представляют собой сложную смесь высокомолекулярных углеводородов нефти и их гетеропроиз-водных, содержащих кислород, серу, азот и металлы (ванадий, железо, никель, натрий и др.). Элементарный состав битумов примерно следующий (в вес.%) углерода 80—85 водорода 8—11,5 кислорода 0,2—4 серы 0,5—7 азота 0,2—0,5. [c.6]

    Добавление щелочных металлов сильнее снижает углеродообразование, чем внесение в состав катализатора щелочно-земельных металлов. Добавление тяжелых металлов (никель, медь, кобальт) приводит к резкому (в 3-4 раза) увеличению образования углеродных отложений. Внесение в состав катализатора ванадия, молибдена, хрома, свинца по-разному изменяет углеродообразование. При их содержании в катализаторе в количестве 0,5-0,7% выход углеродного вешества в 1,3-1,5 раза больше по сравнению с исходным катализатором. При меньшем содержании имеет место снижение выхода углеродного вещества по сравнению с исходным катализатором. Так, при концентрации ванадия 0,02-0,03% выход углеродного вещества уменьщается в 1,25 раза. По данным этих работ металлы по их влиянию на образование отложений углеродного вещества располагаются в следующем нисходящем ряду (никель, медь), кобальт, (молибден, ванадий), (железо, хром), свинец, (бериллий, магний, кальций, стронций), литий, натрий, калий, цезий. [c.69]


Смотреть страницы где упоминается термин Ванадий железом: [c.40]    [c.45]    [c.218]    [c.84]    [c.155]    [c.57]    [c.18]    [c.208]    [c.519]    [c.351]    [c.182]    [c.45]    [c.138]    [c.85]    [c.119]   
Новые окс-методы в аналитической химии (1968) -- [ c.154 , c.288 , c.289 ]




ПОИСК







© 2025 chem21.info Реклама на сайте