Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Отделение ванадия от меди и железа

    Электролиз со ртутным катодом в разбавленной серной кислоте служит для отделения ванадия от железа, хрома. Молибдена, меди, никеля и т. п. Уран и фосфор остаются в водном растворе вместе с ванадием. [c.160]

    Электролиз с ртутным катодом в разбавленном растворе серной кислоты служит для отделения ванадия от железа, хрома, молибдена, меди, никеля и др. Уран и фосфор остаются в водном растворе с ванадием. [c.831]


    Адсорбционная хроматография. Как адсорбент применяется окись алюминия, иногда целлюлоза. Главное внимание обращалось на разработку. методов отделения кобальта от никеля, меди, железа, урана, молибдена, марганца, ванадия, хрома и некоторых других элементов. Характеристика предложенных методов приведена в табл. 17. Хроматографирование на окиси алюминия применяется для качественного анализа катионов метод основан на различной сорбируемости окисью алюминия [c.78]

    Отделение ванадия от меди и железа ведут при напряжении 3,8—3,3 в и силе тока 3,8—3,3-10 а, которые получают введением на магазине соответствующего сопротивления. [c.70]

    Весьма удовлетворительным методом отделения ванадия от различных элементов является электролиз разбавленного сернокислого раствора с ртутным катодом (стр. 165). При этом железо, хром, кобальт, никель, медь и молибден осаждаются на ртути и отделяются таким образом от ванадия, урана, алюминия и фосфора. Мышьяк частично улетучивается, а частично остается вместе с ванадием в растворе. [c.512]

    Самуэльсон и Шрам [55 ] применили цитратную форму анионита для отделения щелочных металлов от ванадия (IV), железа (III), алюминия (III), меди (II), никеля (II) и кобальта (И) (ср. [22]). [c.307]

    Извлечение кобальта в виде дитизоната из аммиачного раствора, содержащего цитрат, является хорошим методом для отделения его от железа, хрома, ванадия и многих других металлов, не образующих дитизонатов. Экстрагирование дитизоном из разбавленного минеральнокислого раствора (стр. 306) отделяет медь, серебро, ртуть и т. п. от кобальта (который остается в водной фазе). Для всех отделений посредством дитизона необхо- димо, чтобы реагирующие металлы присутствовали в относительно малых количествах, так как иначе для экстрагирования потребуется чрезмерно большой объем раствора дитизона это условие осуществимо для большинства материалов, в которых определяют кобальт. [c.271]

    Отделение ванадия от меди и железа [c.92]

    Основной метод отделения хрома, хотя это групповое отделение, основан на переведении хрома в растворимый хромат натрия или калия окислительным сплавлением со щелочами или окислением в щелочном растворе. Так, при осаждении перекисью натрия (стр. 102), так же как при сплавлении с перекисью натрия или с карбонатом натрия и селитрой и выщелачивании плава водой (стр. 841), хром совместно с алюминием, мышьяком, молибденом, вольфрамом, ванадием и др. переходит в раствор и отделяется таким образом от железа, титана, циркония, никеля, кобальта, меди и многих других элементов. Для отделения хрома от железа и алюминия часто применяется метод, который состоит в окислении хрома до [c.539]


    КУ-2 5,02 Для отделения лантанидов, железа и меди от хрома, ванадия от железа, ниобия от титана, магния, алюминия, марганца, актинидов АН-2Ф 8,40 Образует комплексные соединения с катионами тяжелых металлов [c.133]

    Сущность метода. Метод основан на отделении ванадия, железа, меди и других компонентов на катионите КУ-2. Фосфат-ионы катионитом не сорбируются и проходят в фильтрат. [c.375]

    Практическое значение имеет применение ртутного катода для отделения большого количества одного или одновременно нескольких металлов, переходящих в амальгаму, от примеси другого металла, остающегося в растворе. Такие элементы, как алюминий, титан, цирконий, фосфор, мышьяк, ванадий и др., не образуют амальгам и остаются при электролизе с ртутным катодом в растворе. Другие металлы, как железо, хром, медь, висмут, серебро, кадмий, молибден, цинк, олово, никель, кобальт и др., легко и количественно осаждаются на ртутном катоде, для электролиза с электролиза применяют различные приборы, [c.202]

    Электролиз с применением ртут ного катода является прекрасным ме тодом отделения алюминия, титана циркония, магния, кальция, стронция бария, бериллия, ванадия, фосфата мышьяка и урана от железа, хрома цинка, никеля, кобальта, меди, олова молибдена, висмута и серебра, осаждающихся на ртутном катоде. При этом осаждение ведут из сернокислого раствора. В принципе можно осаждение проводить также из раствора H I, но при этом в электролит необходимо прибавлять гидроксиламин. Схема электролиза с ртутным катодом представлена на рис. 12.6. В качестве анода обычно используют платиновую проволоку. Электролиз проводят при силе тока 5—6 А и напряжении 6—7 В. Конец электролиза определяют капельной пробой на отделяемый элемент. Затем, не прерывая тока, сливают электролит и промывают ртуть водой. Промывные воды присоединяют к электролиту, перемешивают и определяют интересующие компоненты, [c.234]

    Купферон реагирует со многими катионами, образуя труднорастворимые комплексы. Растворимость купферона-тов металлов зависит от кислотности растворов регулируя кислотность, можно провести разделение катионов. Например, в сильнокислом растворе (5—10 %-ной соляной или серной) купфероном осаждаются железо, галлий, гафний, ниобий, палладий, полоний, олово, тантал и титан частично осаждаются висмут, молибден, сурьма, вольфрам. В слабокислом растворе осаждаются висмут, медь, ртуть, молибден, олово, торий, вольфрам. В нейтральной среде осаждаются (в присутствии ацетатного буфера) серебро, алюминий, бериллий, кобальт, хром, марганец, никель, свинец, РЗЭ, таллий и цинк. Купферон дает возможность отделить железо, титан, ванадий и цирконий от алюминия, кобальта, меди, арсенита и фосфата. Его часто используют для отделения мешающих катионов, например железа при определении алюминия, а также железа и ванадия при определении фосфора в феррованадии. [c.165]

    Применяют изоамиловый спирт для экстракции тиоциа-натных комплексов железа при фотометрическом определении ванадия — 8-оксихинолином, молибдена — фенил-гидразином, меди — диэтилдитиокарбаминатом для отделения хлорида лития от других хлоридов щелочных металлов, извлечения нитрата кальция из смеси с нитратом стронция. [c.245]

    Определение урана с перекисью водорода в карбонатно-щелочной среде. Колориметрический метод определения урана в карбонатном растворе изучался В. М. Звенигородской [79, 80]. Метод требовал отделения урана от всех примесей, препятствующих его определению. Кроме отделения железа с помощью двухкратной обработки содой, предпринимались дополнительные операции с целью отделения меди, молибдена и кальция (аммиачное осаждение), а также ванадия (фосфатное осаждение). [c.116]

    Клемент [928] разработал метод отделения молибдена от меди, свинца, хрома, никеля, железа и ванадия с использованием катионита в водородной форме (вофатит Р, амберлит Ш-120, дауэкс 50). Молибден переводят в цитратный анионный комплекс в слабокислом растворе. При пропускании через колонку с катионитом он полностью переходит в фильтрат, а катионы названных металлов поглощаются. При проверке метода на ферромолибдене, никель-молибденовом сплаве и рудах были получены удовлетворительные результаты. [c.133]

    Кислотный хром синий 2К был применен для определения 0,17—0,57о Мо в сталях, не содержащих ванадия и меди, после отделения железа в виде гидроокиси [155]. Метод дал удовлетворительные результаты. [c.230]

    Кобальт содержится в рудах, минералах, сплавах, сталях и других промышленных и природных материалах чаще всего вместе с железом, никелем, марганцем, медью, хромом, молибденом, вольфрамом, ванадием и некоторыми другими элементами. Поэтому большое значение имеют методы отделения кобальта от названных элементов. [c.60]

    И. П. Алимарин п Ю. А. Золотов [6] показали, что уран ( 1) количественно экстра гируется в виде а-нитрозо-р-нафтолата из водных растворов не смешивающимися с водой органическими растворителями. Наибатее эффективными экстрагентами для извлечения i-иитрозо-р-нафтолата уранила являются изоамнловый и н.бутиловый спирты и этилацетат. Так как в органическую фазу вместе с ураном переходит много других элементов, в том числе кобальт, медь и железо, то для повышения селективности экстракционного отделения урана в виде а-нитрозо- -нафтолата указанные авторы применили комплексон III. В разработанных ими условиях уран может быть полностью отделен от ванадия и железа. Для отделения урана от ванадия (V) последний восстанавливают до ванадия (IV) с помощью двуокиси серы или самим комплексоном III при pH 1—2 [184]. Затем добавляют не менее чем четырехкратное по отношению к ванадию количество комплексона III, нейтрализуют аммиаком до pH в пределах 6,5—9,0 и экстрагируют несколько меньшим или равным объемом изоамилового спирта, к которому предварительно прибавляют не менее чем 100-кратный избыток а-нитрозо- -нафтола. (в молярном отношении в расчете на UgOg) в виде 2%-ного раствора в этаноле. Для выделения урана из полученного экстракта его упаривают досуха и прокаливают при 900°. Определение урана может быть закончено непосредственным взвешиванием прокаленного остатка. Отделение урана от ванадия становится неполным, если содержание ванадия более чем в 3 раза превышает содержание урана. [c.310]


    Купфероновый метод вполне надежен для определения железа, титана, циркония, ванадия и в отдельных случаях — олова, ниобия, тантала, урана (IV), галлия и, вероятно, гафния. Этим методом можно определять также медь и торий, но осаждать их следует из слабокислых растворов результаты определения этих элементов менее удовлетворительны, чем при обычно принятых методах. Из числа элементов, мешающих применению кунферонового метода, следует упомянуть таллий (III), сурьму (III), палладий, ниобий, тантал, молибден, висмут, церий, торий, вольфрам и большие количества кремния, фосфора, щелочноземельных и щелочных металлов Торий и церий частично выделяются купфероном даже из растворов, содержащих 40% (по объему) серной кислоты. Уран (VI) не влияет на осаждение купфероном. Число элементов, мешающих определению купфероном, может показаться очень значительным, но нужно принять во внимание, что часть из них относится к группе сероводорода и может быть легко отделена перед осаждением купфероном, а некоторые элементы встречаются редко. Здесь следует указать на представляющие интерес разделения, которые можно осуществить этим методом, а именно 1) отделение железа, титана, циркония, галлия и ванадия при анализе чистых алюминия, никеля, цинка и т. п. 2) отделение осаждающихся купфероном элементов от алюминия, хрома, магния и фосфора при анализе различных руд и горных пород 3) отделение ванадия (V) от урана (VI), разделение урана (IV) и урана (VI) и отделение ванадия от фосфора. Осажденяе купфероном может быть осуществлено в присутствии винной кислоты, что дает возможность предварительно отделять железо в виде сульфида. Для этого в раствор вводят достаточное количество винной кислоты, чтобы он оставался прозрачным нри последующем добавлении аммиака. В кислом растворе восстанавливают железо сероводородом и затем подщелачивают аммиаком. Выделившийся осадок сульфида железа отфильтровывают, как описано нри осаждении сульфидом аммония (стр. 115), фильтрат подкисляют серной кислотой, удаляют сероводород кипячением и после этого проводят осаждение купфероном. [c.144]

    G. Е. F. L U и d е И и Н. В. К п о w 1 е s [J. Ат. hem. So ., 45, 676 (1923)] тщательно исследовали точность этого метода при использовании его для отделения алюминия, железа и других аналогичных элементов ох марганца, цинка, никеля, кобальта и меди. Они пришли к следующим выводам 1) умеренные количества железа и алюминия могут быть отделены от марганца и никеля аммиаком так же удовлетворительно, как и ацетатом натрия или карбонатом бария 2) при указанных выше условиях отделение железа и алюминия от кобальта, меди и цинка неполно большой избыток клорида аммония улучшает это отделение 3) избыток аммиака и хлорида аммония дает лучшее отделение от меди и цинка, но при этих условиях осаждение алюмжния неполно и отделение от марганца, никеля и кобальта менее удовлетворительно 4) фосфор и ванадий мало мешают отделению, если железо или алюминий преобладают. В противном же случае они образуют нерастворимые соединения с марганцем и мешают не только при отделении аммиаком, но и при отделении ацетатами или карбонатом бария. [c.437]

    Значительно проще производится разделение по способу извлечения эфиром по Rothe. Этот способ особенно пригоден для отделения больших количеств железа от малых количеств марганца, хрома, никкеля, алюминия, меди, кобальта, ванадия, титана, т. е. от всех металлов, сопутствующих железу в его рудах или в сплавах. 5тот способ основан на способности хлорного железа с эфиром и с соляной кислотой давать легко растворимое в эфире соединение, между тем как хлористые соли других названных элементов этой способностью не обладают. Благодаря этому удается почти количественно выделить эфиром из раствора хлорное железо и таким образом освободиться от большого избытка его. При этом необходимыми условиями являются 1) присутствие железа в виде хлорного 2) определенной плотности кислота 3) отсутствие воды. [c.24]

    Препятствуюшие анализу вещества. Этилксантогенат калия реагирует со многими элементами, к которым относятся железо, никель, кобальт, ванадий, медь, ртуть, цинк, кадмий и др. Ксантогенаты тяжелых металлов плохо растворимы в воде, но большинство из них хорошо растворимо в органических растворителях. Многие дают окрашенные экстракты, что мешает определению молибдена. Для отделения его от большего числа мешаюшлх определению катионов чаще [c.341]

    К. Михайлова [31] предложили метод отделения урана от железа, ванадия, молибдена, вольфрама, меди и свинца. К анализируемому раствору добавляли трилон Б, доводили pH раствора до 1,8—2,0 и пропускали его через колонку катионита КУ-2 в Na-фopмe. При этом все на-званаые примеси переходили в фильтрат, а уран поглощался катионитом и десорбировался затем 10 %-ным раствором азотной или серной кислоты. [c.132]

    Имеется указание на то, что купфераты меди, железа (III), олова (IV), титана, урана (IV) и ванадия (V) количественно экстрагируются из разбавленной (1 9) соляной кислоты. Молибден (VI) также практически полностью переходит в слой органического растворителя. Из разбавленной (1 9) серной кислоты медь извлекается значительно хуже, но другие элементы, из перечисленных выше, в этих условиях также отделяются количественно, за исключением молибдена, микрограммы которого остаются в водном слое после трехкратного экстрагирования. Извпечение купфератов органическими растворителями является эффективным способом отделения железа, титана, молибдена и ванадия при определении других элементов , Экстра- [c.136]

    Хороший способ отделения ванадия от хрома и меди состоит в осаждении ианадия(У) купфероном (с железом(1П) в качестве носителя) из кислого раствора (pH <1) [13, 14]. Вместе с ванадием, кроме железа, оса кдаются титан и цирконий. [c.129]

    В. В. Степи Н н В. И. П о носо применили а нионит ЭДЭ-10 для отделения молибдена от железа, хрома, ванадия и других элементов и разработали методику его определения простых и сложнолегированных сталях. Принцип метода состоит в том, что 0,25-н. раствор по. соляной кислоте пропуокают через колонку с анионитом. При этом железо, хром, ванадий, никель, медь и другие элементы проходят в фильтрат, а молибден сорбируется. За-тезд молибден вымывают 2-н. раствором соляной и 7-н. раствором азотной кислот. В фильтрате определяют молибден колориметрическим или полярографическим методом. [c.200]

    Интенсивно разрабатывались только два типа урановых руд урановая смоляная руда и карнотит. Разнообразие применяемых методов переработки зависело от природы руды и характера присутствующих в ней элементов. Для всех руд общими являются следующие важнейшие операции 1) выщелачивание руды серной, азотной или соляной кислотой для растворения урана (иногда для разложения руды применяется обработка щелочными растворами или сплавление со щелочами) 2) перевод урана в растворимый комплексный карбонат с целью отделения железа, алюминия и марганца 3) осаждение из уранового раствора сульфидов свинца и меди 4) выделение урана в виде ЫЯаигО, или (ЫН4)аи207. В случае карнотита для отделения ванадия и фосфора от урана применяли особые операции. С деталями переработки можно ознакомиться, рассмотрев ряд специальных процессов. Описан [1] процесс извлечения урана из бетафита (стр. 68), путем выщелачивания урана концентрированной серной кислотой, за которым следовала обычная операция отделения урана от ниобия, тантала и титана. [c.99]

    Отделение урана осаждением перекисью водорода применяется главным образом для выделения основной его массы из растворов при определении следов других металлов (титан, никель), так как образующиеся осадки перураната уранила обладают очень небольшой способностью адсорбировать из раствора другие элементы. Только калий, щелочноземельные металлы, железо и ванадий адсорбируются осадком в заметных количествах. Сульфаты и фториды несколько снижают полноту осаждения урана. Железо и медь затрудняют осаждение вследствие каталитического разложения перекиси водорода [741]. Для устранения мешающего влияния железа и меди рекомендуется прибавление малоновой или молочной кислот, образующих с ними достаточно прочные комплексы [8], [c.266]

    Из перечисленных органических осадителей хорошие результаты дает фенилтиогидантоиновая кислота, которая позволяет отделять кобальт от мышьяка, урана, ванадия, титана, воль-ф)рама, молибдена, цинка, марганца, алюминия, магния, кальция. Из экстракционных методов разделения хорошо зареко.мен-довал себя дитизоновый. метод, особенно для. малых количеств кобальта. Экстракция дитизоном в кислом растворе позволяет отделить медь от кобальта наоборот, в слабощелочных цитратных растворах экстрагируется дитизонат кобальта, а железо, титан, хром, ванадий и другие металлы, не образующие дитизонатов, остаются в водном растворе. Экстракцию двойных и тройных роданидных ко.мплексов кобальта. можно также с успехом использовать для отделения кобальта от большинства других элементов, в том числе от никеля, железа и меди, если последние два элемента за.маскировать. [c.61]

    Отделение кобальта фенилтиогидантоиновой кислотой. Фенилтиогидантоиновая кислота СбНзЫНСЗЫНСНзСООН, впервые предложенная как реагент обнаружения кобальта [1193], применяется для отделения кобальта от ряда элементов. Реагент выделяет ионы кобальта в а.м.миачно.м растворе в виде пурпурнокрасного осадка непостоянного состава. В аммиачно-цитратном растворе осаждаются полностью также сурьма и медь, частично никель, хотя осадок никелевой соли растворим в концентрированном аммиаке. Соли трехвалентного железа также несколько загрязняют осадок фенилтиогидантоината кобальта. Однако ионы мышьяка, урана, ванадия, титана, вольфрама, молибдена, цинка, марганца, хрома, алюминия, магния и кальция осадков не образуют. Методика отделения такова [1490]. [c.70]

    Разделение дитизоном. Дитизон применяется главным образом для отделения небольших количеств кобальта от посторонних элементов перед его фотометрическим определением в силикатных породах, биологических и растительных материалах и др. Дитизонат кобальта образуется при pH от 5,5 до 8,5. Это дает возможность отделить от кобальта серебро, медь, ртуть (II), палладий (II), золото (III), висмут, т. е. элементы, экстрагирующиеся раствором дитизона в хлороформе или четыреххлористом углероде при pH менее 4. Экстрагирование дитизоном из аммиачного раствора, содержащего цитрат, отделяет кобальт от железа, хрома, ванадия и многих других металлов. Цинк, свинец, никель и кадмий при указанных условиях экстрагируются вместе с кобальтом, однако если экстракт обработать разбавленным раствором соляной кислоты, то дитизонаты цинка, свинца и кадмия разлагаются и переходят в водную фазу, а дитизонат кобальта остается в неводном растворе без изменения [827]. [c.76]


Смотреть страницы где упоминается термин Отделение ванадия от меди и железа: [c.591]    [c.91]    [c.47]    [c.113]    [c.259]    [c.185]    [c.268]    [c.180]    [c.75]   
Смотреть главы в:

Неорганический ультрамикроанализ -> Отделение ванадия от меди и железа

качественный и количественный ультрамикрохимический анализ -> Отделение ванадия от меди и железа




ПОИСК





Смотрите так же термины и статьи:

Железо отделение



© 2025 chem21.info Реклама на сайте