Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

углерод сера

    Никель-хромовый катализатор (индекс 51—U12, ГОСТ. 12410—66) [57, 58]. Используется для гидрирования органических соединений различных классов (альдегидов, бензола, фенола й др.), для очистки газов и паров от примесей кислорода, окиси углерода, серы. Выпускаются два сорта этого катализатора, отличающиеся активностью. [c.412]

    Сплав железа с углеродом, содержащий около 4% углерода серый чугун белый чугун [c.262]


    При переработке сернистого сырья большое значение имеет переход сернистых соединений, в результате взаимодействия с водородом, в сероводород п углеводороды. Вначале разрывается связь углерод — сера. В результате этого, если сера находится в цикле, кольцо разрывается с образованием алифатического углеводорода. Так, тиофен образует бутан и сероводород  [c.267]

    Свечение разряда в лампе Гримма характеризуется высокой стабильностью. При определении высоких содержаний (до 50 % по массе) воспроизводимость измерений характеризуется значением относительного стандартного отклонения менее 1 %. Этим способом можно успешно определять и такие элементы, как углерод, серу и фосфор в сталях. [c.67]

    Детальное изучение этого вопроса показало, что сернистые соединения с одинаковым типом связи углерод — сера оказывают при равных концентрациях одинаковое влияние на антидетонационное действие тетраэтилсвинца. Снижение антидетонационного действия не зависит от концентрации тетраэтилсвинца. В тех случаях, когда в бензине содержатся различного типа сернистые соединения, их влияние на эффективность антидетонационной добавки оказывается аддитивным. Сера органических сернистых соединений взаимодействует со свинцом тетраэтилсвинца, образуя вещество,. лишенное антидетонационной активности [185]. [c.214]

    В перечисленных реакциях первичной является разрыв связи углерод — сера и присоединение водорода к образующимся осколкам молекулы. [c.9]

    Слой Углерод Сера Водород Ванадий Никель Железо 1 Сумма [c.120]

    Электронное строение тиоцианатного иона, N 8 , может быть представлено гибридом двух резонансных структур. Запишите эти две структуры и определите в каждой из них порядок связей углерод - азот и углерод—сера. [c.507]

    П <. ч Р, МПа и, ч" Г.°С уо ванадий никель углерод сера водород железо сумма [c.146]

    Образование твердых растворов и соединений между твердым и жидким металлом происходит в результате протекания диффузионных процессов в твердой фазе — атомной и реактивной диффузии — и является весьма нежелательным явлением, так как образующийся слой твердого раствора или интерметаллического соединения обычно бывает хрупким, что снижает пластичность всего изделия. Возможны также частные случаи химического взаимодействия жидкометаллической среды с компонентами твердого металла взаимодействие щелочных металлов с растворенным в твердых металлах кислородом, лития — с углеродом, серой и [c.144]


    Индукционная печь (рис. 5.4 ля с сливным носком, помещенного в индуктор в виде соленоида из медной трубки, охлаждаемой водой. Печь заключена в металлический кожух, закрываемый сверху сводом. Для слива металла печь может наклоняться в сторону сливного носка. Процесс плавки в индукционных печах протекает весьма быстро. В качестве металлической шихты в них используется металлический лом известного состава, который точно рассчитан по содержанию углерода, серы, фосфора и легирующих элементов.Так как в индукционных печах отсутствуют электроды, выплавляемая в них сталь не загрязняется углеродом и продуктами их обжига, угар легирующих элементов весьма мал. Поэтому индукционные печи применяют для выплавки только высококачественных сталей и сплавов сложного химического состава. Расход энергии [c.89]

    С, 5, Н, О, X— число атомов углерода, серы, водорода, кислорода и галоидов в молекуле вещества  [c.16]

    Окись углерода. .... Сера........... Водород. ........ 2,67 0,57 1,000 8,000 11,52 2,46 4,32 34,56 3,67 1,.57 8,85 1,89 3,32 26,56 [c.281]

    Какие же вещества являются элементами Первыми правильно установленными элементами были металлы-золото, серебро, медь, олово, железо, платина, свинец, цинк, ртуть, никель, вольфрам, кобальт, И вообще из 105 известных к настоящему времени элементов только 22 не обладают металлическими свойствами. Пять неметаллов (гелий, неон, аргон, криптон и ксенон) были обнаружены в смеси газов, остающейся после удаления из воздуха всего имеющегося в нем азота и кислорода. Химики считали эти благородные газы инертными до 1962 г., когда было показано, что ксенон дает соединения со фтором, наиболее активным в химическом отнощении неметаллом. Другие химически активные неметаллы представляют собой либо газы (например, водород, азот, кислород и хлор), либо хрупкие кристаллические вещества (например, углерод, сера, фосфор, мыщьяк и иод). При обычных условиях лишь один неметаллический элемент-бром-находится в жидком состоянии, [c.271]

    Сопоставление элементного состава асфальтенов и смол различных нефтей показывает, что асфальтены богаче смол углеродом, серой, кислородом и азотом и содержат меньше водорода. Отношение углерода к водороду в смолах составляет примерно 8 1, а в асфальтенах 11 1 и более [19]. Сумма гетероатомов (S, N и О) в циклах у асфальтенов почти всегда выше, чем у смол. Хотя асфальтены более устойчивы, чем смолы, тем не менее в процессе хранения при доступе воздуха на свету или при нагревании они переходят в еще более сложную модификацию, не растворимую в растворителях, характерных для асфальтенов, и отвечающую карбенам и карбоидам. При действии на асфальтены (в растворе хлороформа) концентрированной серной кислоты наблюдается также частичный переход их в карбены и карбоиды. [c.33]

    При нагревании кокса до 1500—1600°С в токе воздуха или кислорода выжигается до 40% углерода, сера сгорает в сернистый газ и выбрасывается в атмосферу. Нагрев кокса в электрокальцинаторе происходит за счет использования омического сопротивления самого кокса. Внутри кусков кокс прогревается лучше, чем на поверхности, за счет более высокой плотности тока. Это было обнаружено путем определения содержания серы по толщине кусков на поверхности их содержание серы было выше, чем в центральной части. [c.163]

    Реакции гидрогенолиза сернистых соединений характеризуются разрывом связи углерод — сера и насыщением водородом свободных валентных й олефиновых связей. Наряду с сернистыми соединениями при гидроочистке гидрируется значительное количество олефиновых углеводородов, смол, азотистых и кислородсодержащих соединений и разрушаются металлоорганические соединения. [c.35]

    Такие примеси, как кислород, пары воды, окись и двуокись углерода, сера, ацетилен и другие непредельные углеводороды, являются каталитическими ядами. Степень влияния этих примесей зависит от применяемого процесса по-пучения полимеров. В некоторых процессах особенно сильное влияние как каталитический яд оказывает ацетилен. В других процессах влияние ацетилена не столь велико. Поскольку в процессах полимеризации могут применяться различные катализаторы, то общее требование заключается [c.303]

    Согласно существующим представлениям [52], гидрогенолиз тиофена на дисульфиде молибдена протекает через стадии адсорбции тиофена на поверхности катализатора, частичного гидрирования адсорбированной молекулы, разрыва связи углерод— сера, соединения атома серы с атомом металла катализатора, гидрирования адсорбированной серы в сероводород, а углеводородного остатка молекулы — в бутан. Большое значение для полноты разложения тиофена имеет наличие свободной поверхности катализатора. По данным [53], гидрирование тиофена и олефинов [c.224]

    Из этих данных видно, что асфальтены богаче, чем смолы, углеродом, серой, кислородом и азотом и содержат меньше водорода. Отношение углерода к водороду в смолах составляет приблизительно 8 1, у асфальтенов 11 1 и выше. Химические свойства асфальтенов изучены очень мало. Хотя асфальтены, очевидно, более устойчивы, чем смолы, однако в процессе длительного хранения при доступе воздуха на свету или при нагревании они переходят в еще более сложную модификацию, не растворимую в растворителях, характерных для асфальтенов, отвечающую карбе-нам или карбоидам. При действии па асфальтены (в растворе [c.72]


    Лучшим способом очистки нафталина от тионафтена и других сернистых соединений является гидроочистка [5, с. 280—305]. Связь сера —углерод менее прочна, чем связь углерод— углерод (соответственно 227,35 и 332,03 кДж/моль) если же оценивать прочность связи с учетом компенсации энергии, идущей на ее разрыв, энергией образования новой связи с катализатором в переходном комплексе, то энергии разрыва составят соответственно 20,94 и 204,33 кДж/моль. Поэтому при гидрогенизационной очистке как нафталина, так и бензола обеспечивается почти количественная деструкция связей углерод — сера практически без деструкции сырья. При выборе условий гидрогенизационной очистки следует считаться с опасностью частичной гидрогенизации нафталина, ведущей к увеличению потерь основного продукта. [c.282]

    При действии хлора на сульфоны и сульфиды происходит разрыв связи углерод — сера и образование сульфохлорида. Так, из дифенилсульфона [42] получаются при 120—130° бензолсульфохлорид и хлорбензол  [c.277]

    Нам кажется, что лучше, не определяя пока понятие 1енотип нефти, проводить генетическую типизацию нефтей на основе определения характерных черт строения и относительного распределения реликтовых углеводородов, унаследованных от материнских веществ данного бассейна осадконакопления. При этом под генетически однородными нефтями надо понимать нефти, содержащие одинаковые качественно и количественно) наборы реликтовых углеводородов, а также другие генетические признаки, например изотопы углерода, серы, характерные для органического вещества, продуцирующего данные нефти. [c.253]

    При регенерации катализатора образуются газы — оксиды углерода, серы, азота —и водяной пар и протекают следующие основные реакции окисления, сопровождающиеся выделением тепла (значеиия теплот реакций в МДж/кг приведены по данным [3, 113])  [c.148]

    На состояние атмосферы существенное влияние оказывают продукты сгорания ископаемого топлива. С 1900 г. использование топлива увеличилось в 10 раз. В атмосферу ежегодно выбрасывается более 200 миллионов тонн оксидов углерода, серы, азота. [c.217]

    По мере повышения температуры в результате взаимодействия между составными частями пластической массы, выделения парогазовых продуктов термодеструкции происходит вспучивание загрузки, увеличение ее объема, которое. заканчивается отверждением пластической массы с образованием твердого полукокса. Одновременно происходит бурное выделение газов, паров воды и смолы, подвергающихся вторичным процессам пиролиза у стен камеры коксования и в подсводовом пространстве. Так как температура в этих частях печи велика ( 1100 - 1200°С), образуются наиболее термически стабильные соединения - водород, метан, ароматические углеводороды и их производные. Содержащиеся в исходной шихте кислород, азот и сера в конечном итоге оказываются в составе также наиболее термически стабильных соединений сероводорода, цианистого водорода, дисульфида углерода, серо-и азотсодержащих гетероциклических соединений (тиофен, пиридин и их гомологи). [c.56]

    Первым этапом любого процесса переработки ТПЭ является добыча. Эта ступень производства неизбежно связана с большими капитальными затратами, расходованием значительных энергетических и трудовых ресурсов, отчуждением больших земельных территорий, интенсивным разрушением ландшафтов, образованием крупных отвалов пустой породы. При открытой добыче угля на разрезах количество вскрышной породы составляет 2-15 т на 1 т добытого угля. При шахтной добыче на 1 т угля приходится 0,3 т пустой породы, однако большое количество отвалов образуется на стадии строительства шахт. Отвалы часто самопроизвольно возгораются, в результате чего в атмосферу выбрасывается огромное количество оксидов углерода, серы, азота, смол. Горение отвалов способствует загрязнению не только воздушного бассейна, но и почвенных горизонтов и грунтовых вод продуктами окисления [c.75]

    Эти факторы дополняются, как указывалось выше, биологическими особенностями микроорганизмов, а именно — их способностью приспосабливаться к окружающей среде. Микроорганизмы по-разному относятся к свету, температуре, кислороду, азоту, углероду, сере, кальцию, кремнию и к органическим веществам. У них может быть неодинаковая степень зависимости от того или другого фактора — сильная, средняя и слабая. [c.295]

    Нефти каждого генотипа имеют свою "геохимическую историю", т.е. претерпевают определенные изменения при региональной миграции, при гипергенных и катагенных процессах в залежах. Если унаследованные от ОВ материнских пород структура УВ, изотопный состав углерода, серы и водорода в процессе нормальной геохимической истории нефти коренной перестройке не подвергаются, то товарные качества нефтей (плотность, вязкость, содержание бензинов и т.д.) могут претерпевать существенные изменения. Поэтому для обоснованного прогнозирования состава нефтей должны быть учтены общие закономерности изменения нефтей при региональной миграции их от зон генерации к зонам нефтенакопления, а также распространение зон гипергенно измененных нефтей и наличие катагенно измененных нефтей. [c.183]

    Рассмотрение реакций серосодержащих соединений с водородом показывает, что их взаимодействие ведет к разложению молекулы с разрывом связей углерод — сера и образованию соответствующего углеводорода — алифатического, нафтенового, нафтено-ароматического или ароматического. На глубину разложения влияют условия реакции с повышением давления глубина превращения возрастает такое же влияние оказывает увеличение количества водорода при повышении температуры глубина превращения несколько снижается. Однако термодинамические расчеты, проведенные для ряда сульфидов и производных тиофена, показывают, что при применяемых обычно в гидрогенизац1ион ых процессах температуре и концентрации водорода возможно превращение на 90—997о [1]. [c.293]

    Марганец образует несколько полиморфных видоизменении до 717 С существует а-Мп выше этой температуры — р-ЛАп, переходящий при 1091°С в у-Мп, а при 1135°С в б-Мп, устойчивый до температуры плавления. Механические свойства марганца и репия сильно изменяются от присутствия примесей азота, водорода, углерода, серы и ([юсфора. [c.290]

    Выдача кокса сопровождается залповыми выбросами пыли (2,5—5,7 г/м ), оксидов углерода, серы и азота, аммиака, нафталина, бензола, цианистого водорода (количества в пределах 1-100 мг/м ). Залповый выброс- в течение 30-50 с. Основной источник вредных вешеств - участки не-догретого кокса. При вьп-рузке такого кокса пылеунос увеличивается с 0,34 до 1,1 кг/т кокса. [c.368]

    Расчет сведен в табл, 17,1 н 17,2. Условно нрннято, что мо.тскулы тверды-, нросты.х веществ (углерод, сера) состоят н.э одного атома Такое допущение е. ав 1С 1Мп от действительного числа атомов в указанных молекулах не отражается на конечных результатах расчета, [c.488]

    Установка ДФС-51 предназначена для решения наиболее массовой задачи эмиссионного спектрального анализа в металлургической промышленности — экспрессного и маркировочного анализа простых и среднелегированных сталей, а также чугунов на содержание углерода, серы, фосфора и других элементов. В состав установки входят вакуумный полихроматор с решеткой 2400 штрих/мм (обратная линейная дисперсия 0,416 нм/мм, спектральный диапазон 175—340 нм, 24 выходных канала), источник возбз ждения спектра ИВС-6, ЭРУ-18, УВК Спектр 2-2 с печатающим устройством и стенд для очистки и осушки аргона. [c.71]

    В анализе руд определяют содержание как основных компонентов, так и примесей однако, анализируя готовую продукцию, обычно определяют только содержание примесей. Анализируя сталь, определяют не железо, а содержание примесей углерода, серы, фосфора, никеля и др., от которыч зависят свойства стали. [c.15]


Смотреть страницы где упоминается термин углерод сера: [c.265]    [c.115]    [c.134]    [c.687]    [c.178]    [c.164]    [c.27]    [c.41]    [c.818]    [c.611]    [c.114]    [c.372]    [c.394]    [c.394]    [c.124]    [c.106]   
Каталитические процессы переработки угля (1984) -- [ c.30 ]




ПОИСК







© 2025 chem21.info Реклама на сайте