Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хромосома дефект

    Попытки излечить врожденные дефекты цветового зрения предпринимались часто, начиная с 1870 г. Из числа применявшихся способов лечения упомянем о нагревании глаз с помощью горячих компрессов, назначении массивных доз различных витаминов, облучении глаз красным и зеленым светом и о цветовой тренировке, основанной на идентификации предъявляемых окрашенных образцов, а также на назывании цветов. Сообщалось о некоторых случаях исцеления. Мы обсудим подобные сообщения ниже в связи с описанием тестов, служащих для проверки правильности цветовых восприятий. Но пока скажем, что достоверность исцеления не была подтверждена ни в одном случае. По-видимому, убедить глаза развить способность воспринимать цвет, если эта способность не была запрограммирована в хромосомах в момент зачатия, столь же трудно, как с помощью какого-либо подходящего лечения убедить собаку превратиться в кошку. Для коррекции недостатков зрения аномальных трихроматов предлагали носить окрашенные фильтры в виде защитных очков [355] однако другие исследователи показали, что такая коррекция невозможна [373, 710]. Поэтому на вопрос Можно ли излечить врожденные аномалии цветового зрения — следует категоричный отрицательный ответ. [c.101]


    У человека ген гемофилии и ген цветовой слепоты расположены в Л -хромосоме на расстоянии 9,8 кроссоверных единиц, оба гена рецессивны. Ген синдрома дефекта ногтей и коленной чашечки находится в аутосоме, а на расстоянии 10 кроссоверных единиц от него расположен ген, определяющий группы крови по системе ЛБО. Ген синдрома дефекта ногтей и коленной чашечки доминантен по отношению к нормальному аллелю. Женщина со второй группой крови и гетерозиготная по остальным анализируемым признакам выходит замуж за мужчину с III группой крови, дальтоника и нормального по остальным анализируемым признакам. Определите вероятность рождения детей в этой семье без анализируемых заболеваний и их группы крови, если известно, что у матерей супругов была первая группа крови и обе они страдали только цветовой слепотой. [c.115]

    О генах, расположенных в половых хромосомах, говорят, что они сцеплены с полом. Поскольку большая часть таких генов локализована в длинной Х-хромосоме, а не в Y-хромосоме, генетические дефекты проявляются у мужчин, имеющих только одну копию этих генов, гораздо чаще, чем у женщин. Так, гемофилия и цветовая слепота поражают по преимуществу мужчин. Женщины в большинстве случаев гетерозиготны по дефектному гену, т. е. у них имеется нормальный ген на второй Х-хромосоме . [c.42]

    Благодаря использованию клонированных фрагментов установлена хромосомная локализация многих генетических нарушений, для которых не удавалось выявить недостаточности по каким-либо специфическим белкам. К таким заболеваниям относятся хорея Гентингтона (хромосома 4) муковисцидоз (хромосома 7) поликистозная нефропатия взрослых (хромосома 16) мышечная дистрофия Дюшенна (X-хромосома). Если область ДНК, в которой локализован дефект, имеет характерную структуру гена (рис. 36.1), то можно синтезировать этот ген, ввести в соответствующий вектор, добиться экспрессии и изучать функцию. Кроме того, можно синтезировать олигопептид, последовательность аминокислот в котором определяется согласно установленной открытой рамке считывания в кодирующей области. Антитела, полученные против этого пептида, представляют собой инструмент для выявления экспрессии данного пептида (или констатации ее отсутствия) у здоровых и больных людей. [c.46]

    Несмотря на определенные успехи в области интеграции чужеродных генов в эмбриональные клетки животных, до сих пор не удалось встроить чужеродную ДНК в заданный участок хромосомы, вытеснить ген и заменить его новой нуклеотидной последовательностью, подчинить новый ген системе регуляции организма. Преодоление этих трудностей позволит успешно осуществлять гено-терапию человека — лечение нескольких десятков генетических заболеваний, обусловленных отсутствием или дефектами генов. [c.127]


    Известна также болезнь Фабри, в основе которой лежит дефект сцепленного с Х-хромосомой гена, обеспечивающего отщепление галакто-зильных остатков от цереброзидов. В результате накапливается три-гликозилцерамид, распад которого блокирован на уровне реакции 7 (рис. 12-5). [c.544]

    Цветовая слепота. Полное отсутствие или недостаток колбочек какого-либо типа ведет к различным формам цветовой слепоты или аномалиям цветоошущения, т. е. неспособности различать определенные цвета. Например, люди, у которьгх отсутствуют красные или зеленые колбочки, не различают красный и зеленый цвета, а те, у кого имеется недостаточное число либо тех, либо других колбочек, плохо различают ненасыщенные оттенки этих цветов. Для выявления дефектов цветового зрения применяют специальные тестовые таблицы (например, таблицы Исихары), составленные из разноцветных точек. На некоторьгх таблицах из этих точек составлены цифры. Человек с нормальным цветовым зрением легко различает эти цифры, а лица с нарушенным цветоощущением видят другое число или вообще не видят никакой цифры. Цветовая слепота передается по наследству как рецессивный признак, сцепленный с полом. Он обусловлен генными дефектами Х-хромосомы, поэтому им чаще всего страдают мужчины око- [c.328]

    Зрелые яйцеклетки, освобождающиеся из яичника (при овуляции) к концу репродуктивного периода, проводят в остановленной профазе I от 40 до 50 лет. Дефекты, возникающие за зто время в яйцеклетке, могли бы быть причиной высокой частоты генетических аномалий среди детей, рожденных немолодыми женщинами. Например, у женщин старше 40 лет рождается 1% детей с синдромом Дауна-результатом наличия лишней копни 21-й хромосомы из-за нерасхождения соответствующих гомологов при делении ядра созревающего ооцита в мейозе I. [c.35]

    Некоторые признаки полностью сцеплены с Х-хромосомой и, следовательно, наследуются так же, как описанный выше цвет глаз у дрозофилы, например неспособность различать красный и зеленый цвета, гемофилия, атрофия зрительного нерва. Гены восьми других наследственных дефектов, в том числе полной цветной слепоты и болезни кожи — пигментная ксеродерма (см. фиг. 93), по-видимому, локализованы в участке, по которому X- и У-хромосомы гомологичны. Были сделаны попытки определить последовательность расположения этих локусов и расстояния между ними, но полученные данные пока еще недостаточно достоверны. [c.147]

    Из сказанного очевидно, что при анализе действия ионизирующей радиации на хромосомы следует учитывать многоплановую картину повреждений, имея в виду весь спектр дефектов [c.7]

    Обычно бактерии размножаются простым клеточным делением, т. е. количество ДНК в хромосоме удваивается, клетки делятся и дочерние клетки получают идентичные хромосомы. Однако, как показали в 1946 г. 1едерберг и Татум [13а], бактерии могут размножаться и половым путем. Прямых данных о спаривании у бактерий первоначально не было, однако было показано, что если смешать клетки двух различных мутант-лых штаммов К-12 Е.соИ и выращивать их совместно в течение нескольких поколений, то некоторые бактерии вновь обретут способность к росту на минимальной среде. Поскольку каждый из этих штаммов содержал по одному дефектному гену, образование особи, не несущей ни одного из этих дефектов, могло произойти лишь в результате комбинирования генетического материала обеих штаммов. Именно эти опыты по- служили основанием для вывода о существовании у бактерий конъюгации. В дальнейшем было показано, что в процессе конъюгации может происходить истинная генетическая рекомбинация. Это означает, что гены двух спаривающихся клеток могут быть интегрированы с образованием единой цепи бактериальной ДНК- [c.189]

    Ооциты второго порядка, освобождающиеся из яичника (нри овуляции) к концу репродуктивного периода, образуются из ооцитов первого порядка, которые провели в остановленной профазе 1 от 40 до 50 лет. Дефекты, возникающие за это время в яйцеклетке, могут быть причиной высокой частоты генетических аномалий среди детей, рожденных немолодыми женщинами. Например 1% детей у женщин старше 40 лет страдает синдромом Дауна, обусловленным трисомией по 21-й хромосоме (следствие нерасхождения соответствующих гомологов при делении ядра созревающего ооцита в мейозе 1) (рис. 15-33). [c.36]

    В случае хромосомных аберраций причины многих врожденных дефектов уже идентифицированы. Хромосомные синдромы однозначно определяются структурой аномальной хромосомы, но механизмы, в силу которых эти аберрации приводят к аномальным фенотипам (т.е. путь от ге- [c.293]

    Две фундаментальные цели генной инженерии заключаются в исправлении генетических дефектов, таких как серповидно-клеточная анемия (точечная мутация в гемоглобине), и в добавлении нормальных генов к другим, например включение гена нитроге-назы в хромосомы пшеницы. Сейчас кажется, что реализация таких целей уже в руках исследователя ген инсулина уже включен в бактерию Е. oli [13]. [c.213]

    Эксперименты в области эмбриологии и образования структур часто напоминают аномальные прививки растений. Например, в ходе развития можно изменить ориентацию наружного покрова и наблюдать, на какие структуры это окажет воздействие. Дефекты в развивающихся тканях действуют подобно экспериментатору, работающему в лучших по сравнению с другими условиях. Дислокации, фокальные изгибы и дисинклииации наблюдались в покрытиях членистоногих [4, 5, 94]. Их тщательное изучение позволяет проверить некоторые выводы, полученные в классических экспериментах, и выдвинуть новые концепции [7]. Винтовые дислокации и дисинклинации наблюдались в хромосомах [94] и, по-види-мому, играют функциональную роль в их расщеплении [4, 94]. [c.309]


    В отношении генетической структуры различают три класса мутантов со следуюгцими дефектами 1) одна пара оснований заменена другой, например вместо АТ может быть ОС или наоборот 2) включена дополнительная пара оснований в нуклеотидную последовательность или утрачена одна из существовавших пар 3) группа оснований или даже генов может быть утрачена (делеция), перемещена в пределах хромосомы (транспозиция) или разорвана путем вставки посторонней ДНК (инсерция). [c.443]

    В некоторых случаях было показано, что трансдуцированный фрагмент ДНК не вступает в рекомбинацию с хромосомой реципиента, а остается вне хромосомы. В этом случае клетка становится гетерозиготной по перенесенным генам. Перенесенная ДНК транскрибируется (на это указывает синтез соответствующего генного продукта), но не реплицируется. Это приводит к тому, что при клеточном делении донорский фрагмент переходит только в одну из дочерних клеток (абортивная трансдукция). Если реципиент ауксотрофный, а перенесенный фрагмент исправляет соответствующий дефект, то расти могут только те клетки, которые унаследовали этот фрагмент при посеве на агар они образуют мельчайшие колонии. [c.466]

    Возможно, что значительная часть непроизвольных выкидышей, случающихся у человека, также вызывается генетическими факторами, которые в гомозиготном состоянии вызывают уродство. Во всяком случае, у человека известно множество летальных и сублетальных факторов, обладающих тем или иным специфическим действием. О двух таких случаях уже говорилось ранее (см. фиг. XVII). Можно было бы привести значительно больше подобных примеров. Если даже ограничиться одними глазами, то можно перечислить сотни различных наследственных аномалий и дефектов органов зрения так же обстоит дело и с другими органа.ми. Следовательно, очевидно, что человек в этом смысле сходен с другими организмами, для которых характерно перекрестное оплодотворение с преобладанием диплофазы, т. е. в наших хромосомах содержится множество неблагоприятных генов, которые, однако, очень редко проявляются в потомстве от браков между людьми, не родственными друг другу. Разумеется, в хромосомах этих людей также заключены известные недостатки, но в большинстве случаев они представляют собой иные отклонения от нормы. Поэтому в большинстве случаев объединяющиеся при оплодотворении хромосомы образуют такие комбинации, что они удачно дополняют друг друга и, как правило, рождающееся потомство совершенно нормально и жизнеспособно. [c.292]

    Нехватки большого участка плеча хромосомы (Синглетон, 1939 Синглетон и Кларк, 1940) или даже целой хромосомы (Стадлер, 1931) иногда обнаруживаются после облучения пыльцы в гетерозиготном состоянии у растений Р]. Такие растения обнаруживают дефекты роста и иногда не ЗЕ.цветают. [c.144]

    Селективная среда HAT может быть использована для отбора клонов, содержащих и другие хромосомы. Например, фермент фосфорибо-зил-гипоксантин—трансфераза (HPRT) участвует в синтезе пуринов. Если линия клеток мыши утрачивает способность синтезировать HPRT, то этот дефект может быть возмещен присутствием соответствующего гена человека. Показано, что все гибридные клоны, отобранные по этому признаку, содержат человеческую Х-хромосому, в составе которой находится ген HPRT. Разработаны другие селективные схемы, позволяющие проводить картирование генов, локализованных и на других хромосомах, кроме X и 17. [c.299]

    Если дефектная клетка дает начало опухоли, она должна передать свою аномальность потомству, т. е. повреждение должно быть наследуемым. Поэтому первая проблема, с которой мы сталкиваемся при попытке понять сущность рака такова является ли этот наследуемый дефект результатом генетического изменения, т. е. изменения в последовательности нуклеотидов ДНК, или изменения эпигенетического, когда меняется картина экспрессии генов, но не первичная структура ДНК. Наследуемые эпигенетические сдвиги, отражающие память клеток (см. разд. 10.3 и 16.2.8), - это черта нормального развития, проявляющаяся в стабильности дифференцированного состояния (разд. 17.1.1) и в таких явлениях как инактивация Х-хромосомы (разд. 10.3.9), и нет никаких оснований сразу отвергать участие подобных процессов в возникновении рака. Для одного редкого и необычного вида рака - тератокарциномы (разд. 16.2.6)-действительно, существуют свидетельства в пользу эпигенетического нроисхождения. Тем не менее имеются серьезные основания думать, что большинство раковых опухолей вызваны именно генетическими изменениями (хотя энигенетические также могут вносить свой вклад в дальнейшее развитие болезни). Говоря конкретно, это означает, что в последовательности нуклеотидов ДНК клеток данной опухоли имеется скрытая аномалия, которую нередко удается выявить. Мы уже говорили о хроническом миелогенном лейкозе, подобные примеры нам будут встречаться и в дальнейшем. Однако из сказанного вовсе не следует, что генетическое изменение - это первый шаг. ведуший к раку. Более правильное утверждение состоит в том. что большинство канцерогенных агентов вызывает генетические изменения, и, наоборот, аген- [c.449]

    Некоторые. Х-сцепленные заболевания характеризуются значительной распространенностью. Наиболее часто встречаются дефекты цветового зрения, полиморфные варианты фермента глюкозо-6-фосфат— дегидрогеназы (G6PD) (разд. 4.2), а также Х-сцепленная задержка умственного развития с маркерной (ломкой) Х-хромосомой (разд. 8.2.1.2). [c.164]

    Важность изучения вариантов СбРВ для понимания механизмов недостаточности ферментативных систем у человека. Система G6PD служит замечательной моделью, поскольку у мужчин с мутацией в Х-хромосоме имеется продукт только мутантного гена. Напротив, у гетерозигот по аутосомным мутациям нормальный и измененный продукт представлены в соотношении 1 1, и, следовательно, обнаружить незначительные изменения физико-химических свойств продуктов мутантного гена достаточно сложно. GбPD обладает и некоторыми другими особенностями, позволяющими проводить генетический анализ гораздо более подробно, чем это возможно для большинства наследственных дефектов ферментативных систем человека. [c.26]

    Перечисленные выводы вполне справедливы для большинства или даже для всех наследственных дефектов ферментативных систем человека. Последний вывод связан с локализацией гена G6PD в Х-хромосоме. Известно, что в большинстве клеток гетерозиготных женщин у Х-сцепленных генов функционально активен только один из двух аллелей. Это обстоятельство может оказаться полезным для решения проблем, связанных с ростом опухолей и клеточной дифференцировкой. Так, например, было обнаружено, что в клетках лейомиомы матки у женщин, гетерозиготных по двум электрофоретическим вариантам G6PD, присутствует только один тип фермента [1002]. Это можно объяснить происхождением всех клеток опухоли от одной клетки. Подобные наблюдения, позволяющие предполагать моноклональное происхождение опухолей, имеются для большинства неопластических процессов (см. разд. 5.1.6). [c.27]

    Ген HPRT экспрессируется в клетках амниотической жидкости, поэтому недостаточность гипоксантин-гуанин—фосфорибозилтрансферазы удается диагностировать с помощью амниоцентеза. Этим дефект HPRT в корне отличается от других патологических состояний, наследуемых сцепленно с Х-хромосомой, например гемофилии или мышечной дистрофии Дюшенна, при которых биохимический дефект не проявляется в клетках амниотической жидкости. [c.47]

    Различают несколько форм иммунной недостаточности. Одна из них, называемая острой комбинированной обусловливает повышенную восприимчивость к заражению самыми разнообразными бактериями, вирусами и грибами. При этой форме нарушены функции как В-, так и Т-лимфоцитов. Иногда оказываются дефектными только Т-лимфоциты. Оказалось, что в основе таких дефектов лежит нарушение дифференцировки стволовых клеток в зрелые лимфоидные клетки [1274 1267]. Эта группа заболеваний гетерогенна по этиологии, поскольку известны как случаи с аутосомно-рецессивным наследованием, так и варианты, которые наследуются сцепленно с Х-хромосомой. Среди вариантов с аутосомно-рецессивным наследованием обнаружена дополнительная гетерогенность. Так, комбинированная иммунная недостаточность может быть вызвана дефектом аденозиндезаминазы (24275) или нуклеозидфосфори-лазы (16405) [1294]. [c.48]

    Общие проблемы выявления гетерозигот. Впервые важность выявления и изучения гетерозигот для медицинской генетики отметил в 1949 г. Нил [1236]. Им были систематизированы имевшиеся в то время разрозненные данные. Позже (в 1953 г.) появились более полные работы Нила [1237] и (в 1954 г.) Франческетти и Клайна [1084]. Быстрое развитие биохимической генетики сделало возможным выявление гетерозиготных носителей многих болезней, особенно тех, которые обусловлены дефектами ферментов, выявляемых в фибробластах или клетках крови (табл. 4.10). Как правило, активность ферментов у гетерозигот снижена приблизительно вдвое по сравнению с нормальными гомозиготами, однако во многих случаях четкую грань между этими двумя группами провести невозможно. Некоторые индивиды демонстрируют промежуточные характеристики даже при прямом измерении активности фермента. Это неудивительно, если принять во внимание, что разные мутации в составе одного и того же локуса вызывают изменения активности фермента различных типов. Выявление гетерозигот важно не только для изучения механизма действия ферментов, оно имеет очень большое практическое значение. Установление факта гетерозиготности очень существенно для людей, у которых близкие родственники страдают болезнями, детерминируемыми Х-хромосомой или аутосомно-рецессивными болезнями. Например, сыновья женщин, гетерозиготных по Х-сцепленному заболеванию, с вероятностью 50% наследуют эту болезнь. Для большинства аутосомно-рецессивных болезней выявление гетерозигот не играет столь важной роли, если только потенциальные гетерозиготы-братья или сестры больного гомозиготного индивида-не собираются жениться на двоюродных родственниках. Риск появления гомозиготных детей имеется только в том случае, когда будущие родители оба гетерозиготны, а для большинства рецессивных заболеваний вероятность случайной встречи таких гетерозигот чрезвычайно мала (см. закон Харди-Вайнберга, разд. 3.2). [c.54]

    Тип наследования гетерозиготы. Дефекты ферментов, как правило, наследуются рецессивно. Гены, детерминирующие эти нарушения, могут быть сцеплены с аутосомами или в некоторых случаях с Х-хромосомой. Активность ферментов у здоровых гетерозигот-носителей обычно вдвое меньше средней для популяции. Отсюда следует, что организм человека может прекрасно функционировать при наличии фермента, работающего в полсилы . Этот факт указывает на существующие в принципе значительные возможности регуляции метаболических путей. Однако, если метаболический путь перегружен веществом, для утилизации которого требуется дефектный фермент, способность организма перерабатывать избыточный метаболит может быть снижена по сравнению с гомозиготами. Есть данные, свидетельствующие о том, что подобные нарушения не безразличны и для гетерозигот. Возможно, именно они-причина большей предрасположенности гетерозигот к обычным соматическим и психическим заболеваниям. В настоящее время систематические широкомасштабные обследования гетерозигот по рецессивным генам, особенно в среднем и пожилом возрасте, почти не проводятся. Причина состоит в том, что с врожденными дефектами обычно имеют дело педиатры или медицинские генетики с педиатрическим образованием, т.е. специалисты, не заинтересованные в эпидемиологических или популяционных исследованиях. С другой стороны, популяционные генетики, как правило, не вникают в биохимические тонкости. [c.70]

    Образование антител и их функции. Живые организмы постоянно подвергаются атаке как извне-со стороны бактерий и вирусов, так и изнутри-со стороны клеток, которые в результате случайных событий приобретают способность неограниченно делиться и формировать опухоли. В ходе эволюции выработалась сложная защитная система, состоящая из ряда клеточных и гуморальных факторов. Эта система называется иммунной, а изучающая ее наука-иммунологией [100]. На рис. 4.61 представлена сильно упрощенная схема иммунологической защиты и ее основные компоненты. Указаны также те компоненты, для которых обнаружены генетические дефекты. Важнейшие структуры иммунной системы-лимфоциты-обладают рецепторами к антигенам. Рецепторы лимфоцитов (и Т-, и В-клеток) закодированы в геноме и сходны по своей структуре, однако гены для этих двух типов рецепторов различны и локализуются в разных хромосомах. Секрети-руемые рецепторы В-клеток (антитела) представлены иммуноглобулинами. Рецепторы Т-клеток не секретируются. [c.100]


Смотреть страницы где упоминается термин Хромосома дефект: [c.167]    [c.146]    [c.372]    [c.251]    [c.26]    [c.56]    [c.448]    [c.112]    [c.263]    [c.144]    [c.253]    [c.479]    [c.50]    [c.379]    [c.106]    [c.33]    [c.34]    [c.49]    [c.55]   
Жидкокристаллический порядок в полимерах (1981) -- [ c.309 ]

Жидкокристаллический порядок в полимерах (1981) -- [ c.309 ]




ПОИСК





Смотрите так же термины и статьи:

Хромосома хромосомы

Хромосомы



© 2025 chem21.info Реклама на сайте