Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Отводящий аппарат насоса

    Насосы нормального ряда являются центробежными со спиральными отводами (улитками) и турбинного или секционного тина е направляющими аппаратами (КВН-55 /( 180 н КВН-55 X 120). Насосам данного ряда присущи следующие конструктивные особенности  [c.14]

    Керосиновая фракция с 31-ой или 29-ой тарелок основной колонны поступает в первую секцию отпарной колонны 9. Пары из отпарной колонны 9 направляются в основную колонну 8 под 30-ую тарелку. С низа первой секции отпарной колонны 9 фракция прокачивается через холодильник в мерники. С 14-ой тарелки основной колонны 8 во вторую секцию отпарной колонны 9 отводится флегма дизельного топлива. Пары из этой секции возвращаются под 16-ую тарелку основной колонны, а дизельное топливо с низа отпарной колонны насосом через теплообменники и холодильники откачивается в мерники. В низ основной колонны 8 и в отдельные секции отпарной колонны 9 подается перегретый водяной пар. Мазут — остаток основной ректификационной колонны 8 забирается горячим насосом и прокачивается через печь 13 в вакуумную колонну 12. В случае временного отключения вакуумной части мазут направляется на другие процессы, в частности на термический крекинг. Остальные технологические узлы установки — вакуумная перегонка мазута, стабилизация, абсорбция и выщелачивание компонентов светлых продуктов — работают по описанной выше схеме установки АВТ производительностью 1,0 млн. т/год. Главным аппаратом установки является основная ректификационная колонна диаметром 3,8 м с 40 тарелками желобчатого типа. Из них шесть расположены в отгонной части, а 34 в концентрационной. В колонне осуществлено два циркуляционных орошения с отбором флегмы. [c.88]


    Отвод служит для сбора жидкости за рабочим колесом, гашения момента скорости и преобразования кинетической энергии жидкости в энергию давления, подвода жидкости к напорному патрубку или к следующей ступени насоса. Отводы центробежных насосов (рис. 1.4) выполняют спиральными (а), кольцевыми (б), в виде направляющих аппаратов (в), составными (г)—состоящими из комбинации направляющего аппарата со спиральным или кольцевым отводом. Для осевых насосов отводом служат выправляющие аппараты, выполненные в виде ряда неподвижных профильных лопаток, расположенных равномерно по окружности. [c.8]

    Полученные растворы хлористого цинка направляют непосредственно потребителям или упаривают. Упарку осуществляют в чугунных котлах, обогреваемых топочными газами или водородным пламенем. Температура раствора в процессе упарки постепенно повышается до 360 °С. Пары воды из аппарата отводятся вакуум-насосом в конденсаторы. Полученный расплав хлористого цинка разливается в герметично закрывающиеся барабаны. [c.576]

    Через загрузочное отверстие в котел с помощью ленточного транспортера загружают 1500... 1600 кг охлажденного мяса или 1200... 1250 кг мороженого в блоках. После загрузки котла крышку люка закрывают, оставляя открытым пробный кран, через который в атмосферу выводят вторичный пар, образующийся при варке и подсушивании мяса. Вторичный пар из аппарата можно также отводить вакуум-насосом, поддерживая в котле небольшое разрежение (остаточное давление 0,08...0,09 МПа). [c.747]

Рис. 8. Схемы отводов центробежных насосов а - спиральный, б -кольцевой, н - направляющий аппарат г - составной отвод Рис. 8. Схемы отводов <a href="/info/41176">центробежных насосов</a> а - спиральный, б -кольцевой, н - направляющий аппарат г - составной отвод
    Коллинс [56] рекомендует соблюдать следующие приемы конструирования и сборки элементов. Применять по возможности лишь соединение листов встык (рис. 130, а). Если нельзя избежать в конструкции приподнятых краев или соединения листов внахлестку, то необходимо выполнить сплошной шов, исключающий попадание электролита в зазоры (рис. 130, б). Болтовые и заклепочные соединения не должны применяться. Также следует избегать сварки листов лишь с одной стороны (рис. 130,в). Перегородки, загустители, сопла отводов, клапаны, насосы должны быть смонтированы таким образом, чтобы аппарат можно было легко промыть и высушить (рис. 130,г). Острые углы и ниши, в которых могут задерживаться или конденсироваться электролиты, должны быть исключены (рис. 130, д). [c.267]


    Подачу в номинальном режиме работы ПО л/с обеспечивает центробежный одноступенчатый, нормального давления, с консольным расположением рабочего колеса на валу, без направляющего аппарата, с двухзавитковым спиральным отводом пожарный насос ПН-110. [c.719]

    Отводы осевых насосов (выправляющий аппарат) выполняют в виде расположенных по окружности за рабочим колесом неподвижных лопаток (см. рис. 47). [c.72]

    По виду отвода динамические насосы подразделяют на насосы со спиральным отводом, с полу спиральным отводом, с кольцевым отводом, с двухзавитковым отводом, с направляющим аппаратом. [c.8]

    Чтобы получить наибольшую подачу при заданном диаметре корпуса, в вертикальных насосах применяют значительно большие углы лопаток направляющего аппарата, чем в спиральных отводах горизонтальных насосов. [c.138]

    На фиг. 12.11, а изображены места питтинга спирального отвода пропеллерного насоса, вызванного плохой его обтекаемостью, на фиг. 12.11, б — места питтинга лопаток направляющего аппарата пропеллерного насоса из-за несоответствия углов потока и лопаток, а на фиг. 12.11, е — питтинг языка спирального отвода, наблюдающийся при длительной работе насоса на повышенных подачах. [c.238]

    Затем устанавливают 4 струны-отвеса вдоль вала насоса и производят выверку вертикальности линии вала. Проверяют также вал насоса по расточкам выправляющего аппарата путем перемещения выправляющего аппарата и отвода. Для сборки нижнего направляющего подшипника 18 на выправляющий аппарат кладут доски. На доски устанавливают обе половины подшипника, собирают их на валу насоса, убирают доски, опускают собранный подшипник и крепят его гайками к выправляющему аппарату. Так же собирают верхний подшипник 10 на отводе 15 насоса. [c.81]

    Отвод воды за выправляющим аппаратом насоса осуществлен по бетонному напорному диффузору, имеющему переход из круглого сечения в прямоугольное оканчивается водовод бассейном, на выходе которого в канал установлен сегментный затвор на. каждом агрегате. [c.343]

    Разложение гидроперекиси изопропилбензола. Гидроперекись изопропилбензола разлагают в реакторе — цилиндрическом пустотелом аппарате серной кислотой при 70°С. Для отвода тепла, выделяющегося при реакции разложения, около реактора размещают два последовательно работающие холодильника, охлаждаемые водой, подаваемой насосом. [c.89]

    Установка производительностью 1,2 м /ч включала в себя расходный бак-усреднитель емкостью 5,0 м , в который раствор подавался из красильного аппарата насосом растворный бак хлористого натрия емкостью 0,5 м , управляемый узлом автоматического дозирования через электромагнитный клапан. В качестве чувствительного элемента в этом узле использовали датчик электрической проводимости, связанный со смесителем вместимостью 0,4 м , а также электролизер, снабженный вентилятором для отвода газов и линией сжатого воздуха. [c.101]

    Насос с кольцевым отводом Насос с направляющим аппаратом Насос с составным отводом (см. рис. 1.16) Насос с неподвижными лопастями рабочих колес Насос с поворотными лопастями рабочих колес [c.16]

    Из колонны 30 сверху отводятся пары тяжелого бензина и воды, а также газы разложения, образовавшиеся при нагреве нефти в печи 27 они проходят аппарат воздушного охлаждения 31 и водяной холодильник 32. Полученная газожидкостная смесь газ— бензин—вода разделяется в сепараторе 33, с верха которого уходит газ (в топливную систему), а с низа — водяной конденсат (отводится, дренируется,. в систему очистки воды). Конденсат тяжелой бензиновой фракции отводится насосом 44 и Вместе с фракцией легкого бензина передается на стабилизацию. В качестве орошения атмосферной колонны 30 используется верхнее циркуляционное орошение. Циркулирующая жидкость (флегма) с третьей тарелки (сверху) колонны 30 поступает через аппарат воздушного охлаждения 34 и водяной холодильник 37 на прием насоса 43 и этим насосом закачивается на верхнюю тарелку колонны. [c.14]

    Для конденсации бензиновых паров и охлаждения газов, выходящих из колонны 8 сверху, служит аппарат воздушного охлаждения 11. После него смесь проходит водяной холодильник 12. В горизонтальном сепараторе 13 (он же сборник орошения) жирные газы отделяются от нестабильного бензина. Часть бензина подается насосом 14 на верхнюю тарелку колонны в качестве орошения остальное количество отводится с установки. [c.25]

    Керосиновая фракция выводится с низа отпарной колонны 35 насосом 42 через теплообменник 7 и аппарат воздушного охлаждения 6 отводится с установки. [c.14]

    С низа атмосферной колонны 30 насосом 40 откачивается мазут, который нагревается в змеевике вакуум-печи 56 и по двум тангенциальным вводам подается в вакуумную колонну 48. В сечении питания этой колонны над вводом сырья установлены отбойные тарелки для предотвращения заноса капель жидкого остатка. Для орошения верха колонны 48 используется верхнее циркуляционное орошение первая масляная фракция с третьей верхней тарелки вакуумной колонны забирается насосом 51, прокачивается через теплообменник 12, аппарат воздушного охлаждения 47 и после него циркулирующая часть возвращается на верхнюю тарелку колонны 48. Балансовое количество первой масляной фракции отводится с установки. [c.15]


    Вторая масляная фракция выводится с низа отпарной колонны 49 насосом 54 и после теплообменника И, аппарата воздушного охлаждения 3 откачивается с установки. Третья масляная фракция отводится с низа отпарной колонны 50 и направляется насосом 52 через теплообменник 13 и аппарат воздушного охлаждения 2 в резервуар. [c.15]

    Стабильный бензин отбирается с низа колонны 59 и передается в блок вторичного фракционирования в колонны 62 и 68. С верха колонны 62 отводится фракция н. к. —85 °С, которая направляется в колонну 68 в качестве парового питания. Циркулирующая часть фракции н. к. —85 °С поступает в аппарат воздушного охлаждения 65, далее в холодильник 66, сборник 67 и насосом 77 подается на орошение колонны 62. С низа колонны 62 фракция 85—120 °С (или 85—180 °С) отводится с установки через теплообменник 61 и аппарат воздушного охлаждения 63. С верха колонны 68 отводится фракция н. к. —62 °С, которая поступает в аппарат воздушного охлаждения 69, водяной холодильник 70, сборник 71, откуда циркулирующая часть подается на орошение колонны 68, а балансовое количество отводится с установки. Тепло в низ колонны 68 подводится от теплообменника 78 за счет тепла дизельного топлива. Выводимая с низа колонны 68 фракция 62—85 °С насосом 79 отводится с установки через теплообменник 60 и аппарат воздушного охлаждения 64. [c.15]

    Избыток тепла отводится из колонны 18 промежуточным циркуляционным орошением (насос 16 и аппарат воздушного охлаждения 17). Топка 2 под давлением служит для разогрева системы при пуске. Технологический режим реакторного блока  [c.32]

    В нижнюю секцию колонны 13 в качестве орошения подается тяжелый газойль, выводимый насосом 11 и прокачиваемый через аппарат 5 ввод этого орошения предотвращает унос катализаторной пыли. С низа колонны 13 отбирается смесь катализаторной пыли с тяжелыми жидкими продуктами крекинга, которая поступает в шламоотделитель 15. Отсюда шлам насосом 12 возвращается в реактор 7, а декантат — ароматизированный тяжелый газойль крекинга —отводится с установки. [c.40]

    Из этой колонны сверху выходят пары пропана и направляются в конденсатор-холодильник 14 и затем в приемник 15. Из аппарата 15 часть пропана насосом 16 подается на верхнюю тарелку колонны 12 в качестве орошения, а избыток отводится с установки. Колонна 12 обслуживается кипятильником 13. Нижний продукт колонны 12 — нзобутан — поступает в кипятильник 13, далее в теплообменник 17, в котором охлаждающей средой является выходящая из реактора 6 смесь продуктов реакции, и в холодильник 2, где используется в качестве хладагента. [c.61]

    Верхним продуктом колонны 24 является н-бутан, который после конденсации в аппарате воздушного охлаждения 25 собирается в приемнике 26. Отсюда часть н-бутана насосом 27 подается на верхнюю тарелку колонны 24 в качестве орошения, и основная часть отводится с установки. Нижний продукт колонны 24 после кипятильника 28 подается насосом 29 через паровой подогреватель 30 в колонну вторичной перегонки 31. [c.61]

    Для создания необходимого температурного градиента в контакторе, а также для повышения четкости разделения и увеличения выхода рафината предусматривается циркуляция экстрактного раствора через холодильник 13 и возврат насосом 11 псевдо-рафината из отстойника 13 в нижнюю часть аппарата. Рафинатный раствор с верха контактора 12 отводится в приемник 4, а экстрактный раствор из правой части отстойника 13 насосом 14 направляется в секцию регенерации растворителя. [c.74]

    Известны непрерывно действующие кристаллизаторы циркуляционного типа двух видов — с циркулирующим раствором и с циркулирующей суспензией. В первых аппаратах в одной части аппарата (холодильнике) раствор пересыщается, а в другой происходит собственно кристаллизация. С помощью насоса суспензия непрерывно циркулирует в замкнутом контуре холодильник — кристаллизатор при этом в кристаллизаторе создается восходящий поток, который поддерживает кристаллы во взвешенном состоянии. Раствор с наибольшим пересыщением соприкасается вначале с кристаллами, находящимися в нижней части взвешенного слоя, поэтому именно в этой части аппарата происходит наибольший рост кристаллов. Таким образом осуществляется распределение кристаллов по величине на разной высоте аппарата. Раствор, выходящий с верха аппарата, практически свободен от кристаллов и поступает в холодильник. Крупные кристаллы, скорость осаждения которых больше скорости циркуляции смеси, оседают на дно и непрерывно выводятся из аппарата. Величину кристаллов регулируют, изменяя скорость циркуляции смеси и скорость отвода тепла в холодильнике. Эти кристаллизаторы пригодны для веществ, кристаллы которых оседают в растворе со скоростью более 20 мм/сек (при меньших скоростях оседания трудно избежать циркуляции кристаллов с маточным раствором). В аппаратах второго типа используется принцип совместной циркуляции. В этом случае растущие кристаллы попадают в зону, где создается пересыщение. [c.174]

    Характерными для отвода центробежных насосов являются следующие периодические частоты, Гц оборотная /1 = /г/бО лопастная /2= 21/60 лопаточная /з=п21го/60, где п — частота вращения ротора, — число лопастей рабочего колеса, — число лопаток выправляющего аппарата. При безлопаточном отводе с одно- или двухзавитковой спиралью о соответственно равно 1 или 2. [c.145]

    Пропеллерные или осевые насосы имеют рабочие колеса, напоминающие пароходные гребные винты (рис.. 7-2,6 и 7-6). Рабочее колесо осевого насоса состоит из втулки 1, на которой закрепляется несколько лопастей 2. Втулка креггит-ся на валу. Отводом осевого насоса служит осевой направляющий аппарат 3. [c.122]

    Отводы осевых насосов выполняют в виде выправляющих аппаратов, представляющих собой расположенные по окружности неподвижные профильные лопатки, образующие диффузориые межло-паточные каналы. В выправляющем аппарате происходит уменьшение момента скорости потока жидкости и преобразование кинетической энергии в энергию давления. [c.23]

    В качестве отвода в насосе использует ся многоканальный направляющий аппарат. Во входном патрубке выполнено на правляющее ребро для ликвидации закрут ки потока при входе в рабочее колесо. [c.105]

    Нагрев жидкости и частичное испарение воды в греющей камере приводит к возникновению циркуляции в контуре греющая камера — сепаратор. Образующийся вторичный пар отделяется от жидкости в сепараторе. Жидкость вновь направляется в трубчатку, а пар подается в греющую камеру следующего аппарата. Из последнего корпуса вторичный пар отводится к конденсатору 3. Конденсат отводится насосом 7. Вакуум поддерживается при помощи вакуум-насоса 5. Температура от первого к последнему корпусу постепенно снижается. В первом корпусе температура должна поддерживаться на уровне, соответствующем температуре кипения раствора прп концентрации в первом корпусе. Верхний предел этой температуры часто лимитируется возможностью порчи продукции при повыщении температуры выше заданной. В следующих корпусах температура понижается. Тем1пература в последнем корпусе определяется точкой кипения раствора конечной концентрации. Температура острого пара выбирается в зависимости от температуры раствора в первом корпусе. [c.275]

    Обычно теплопотребляющие аппараты устанавливаются над испарителем так, чтобы был обеспечен сток конденсата. Если ко мпонов-ка цеха или условия производства не допускают такого расположения, то конденсат отводится в коллектор и оттуда перекачивается в испаритель. В результате этого установка усложняется и работа ее становится зависимой от качества и надежности насоса. [c.316]

    Нефть поступает в низ электродегидратора 4 через трубчатый распределитель 21 с перфорированными горизонтальными отводами. Обессоленная нефть выводится из электродегидратора сверху через коллектор 19, конструкция которого аналогична конструкции распределителя. Благодаря такому расположению устройств ввода и вывода нефти обеспечивается равномерность потока по всему сечению аппарата. Отстоявшаяся вода отводится через дренажные коллекторы 22 в канализацию или в дополнительный отстойник 12 (в случае нарушения в элек-тродегидраторе процесса отстоя). Из отстойника насосом 14 жидкая смесь возвращается в процесс. Из электродегидратора I ступени сверху не полностью обезвоженная нефть поступает под давлением в электродегидратор II ступени. В диафрагмовом смесителе 10 поток нефти промывается свежей химически очищенной водой, подаваемой насосом 8. Вода для промывки предварительно нагревается в паровом подогревателе 9 до 80—90 °С расход воды составляет 5—10 % (масс.) на нефть. Обессоленная и обезвоженная нефть с верха электродегидратора II ступени отводится с установки в резервуары обессоленной нефти, а на комбинированных установках она [c.9]

    Из колонны 13 сверху отводятся пары бензина, углеводородные газы и водяной пар они поступают в аппарат воздушного охлаждения 20, газоводоотделитель 21, где газ отделяется от конденсата бензина и воды. Бензин насосом 23 частично возвращается в колонну 13 в качестве острого орошения, а балансовое его количество направляется на стабилизацию (для отделения растворенных газов). [c.38]

    Часть конденсата из приемника 9 подается насосом на орошение колонны 7, а избыток — в ректификационную колонну 10 для выделения фракции Сз-В этой колонне пропановая фракция отделяется от изобутен-бутан-пентаноБой. Пары ее после конденсации в аппарате воздушного охлаждения 8 поступают в приемник 9. Часть фракции Сд через холодильник 2 выводится в товарный парк, а основное количество служит орошением, подаваемым на верх колонны 10. Тепло в низ этой колонны подводится с помощью подогревателя 11, в трубное пространство которого подается водяной пар. Продукт из подогревателя направляется в колонну 12 для отделения изобутан-бутановой фракции от пентановой. Низ колонны 12 также снабжен подогревателем-кипятильником 11, из которого через холодильник 2 в сырьевой парк отводится пентановая фракция. [c.60]

    Сконденсированная основная часть паров нефтепродуктов (отгон, или так называемый черный соляр ) собирается в нижней части сепаратора 14, откуда центробежным (или поршневым) насосом отводится через холодильник в сборник топлива. Черный соляр используется в качестве компонента топочного мазута. В испарителе 10 накапливается окисленный битум. С низа испарителя 10 битум забирается поршневым насосом 9 и подается в качестве рециркулята в смеситель 5. Коэффициент рециркуляции зависит от марки получаемого товарного битума. Избыток окисленного битума забирается поршневым насосом 12 и направляется через аппарат воздушного охлаждения 13 в приемники битума (битумораздаточники). [c.107]

    Газ вводится в контактный аппарат сверху и через распределительные решетки и смесители последовательно проходит четыре слоя контактной массы. Для снятия тепла, выделяемого при окислении диоксида серы, воздуходувкой 4 через пневмозаслонки регуляторов температуры в контактный аппарат (на вход и перед каждым слоем катализатора) подается холодный воздух. Из аппарата 3 газ поступает под колосниковую решетку в нижнюю часть башни-конденсатора 7. На верх башни насосом 15 в качестве орошения подается холодная серная кислота, которая вводится из напорного бачка 8 через устройства, равномерно распределяющие кислоту по сечению башни-конденсатора. Сконденсированная в башне серная кислота через холодильник 6 выводится в сборник 14, откуда балансовый избыток кислоты отводится в резервуары готовой продукции. [c.113]

    При получении метанола на базе природного газа очистка синтез-газа сводится к освобождению его от "углекислоты. Это может быть осуществлено либо водной отмывкой под давлением, либо абсорбцией углекислоты раствором моноэтаноламина. При большом содержании з глекислоты в газе (свыше 10%) обычно применяют водную очистку. Процесс проводят при давлении 25—28 ат в абсорбере, заполненном кольцами Рашига. Отмытый от СОг газ отводится с, верха абсорбера. Вода и растворенные в ней газы направляются на десорбцию, которая осуществляется редуцированием давления до атмосферного в агрегате мотор — насос — турбина. В этом агрегате рекуперируется до 40% энергии, затраченной на подачу воды в аппараты высокого давления. [c.18]


Смотреть страницы где упоминается термин Отводящий аппарат насоса: [c.356]    [c.33]    [c.37]    [c.37]    [c.201]    [c.18]    [c.32]    [c.175]   
Гидравлические машины. Турбины и насосы (1978) -- [ c.223 ]




ПОИСК





Смотрите так же термины и статьи:

Отвод



© 2024 chem21.info Реклама на сайте