Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водород из нефтяных пропилена

    Пиролиз различных индивидуальных углеводородов и нефтяных фракций имеет огромное техническое значение. Спрос на эти-ден, пропилен, бутадиен, бензол и другие продукты пиролиза непрерывно растет, что привело к созданию крупных установок производительностью несколько сот тысяч тонн этилена в год. Появились модификации процесса, в которых для увеличения выхода целевых продуктов пиролиз ведут с добавками кислорода, водорода, метана, аммиака, двуокиси углерода исследуется пиролиз с применением гомогенных и гетерогенных катализаторов. [c.227]


    Основные работы по химическому использованию различных продуктов каталитического гидрирования окиси углерода, проведенные в Германии, были обусловлены нехваткой определенных видов сырья в военное время. Например, вследствие дефицита натуральных жиров три фракции продуктов каталитического гидрирования окиси углерода перерабатывали в различного рода заменители. Фракцию дизельного топлива (насыщенные Сю—С а-углеводороды) использовали для получения синтетических моющих веществ с помощью сульфохлорирования (гл. 6, стр. 98) или хлорирования, за которым следовали конденсация с бензолом и сульфирование (гл. 5, стр. 87). Твердый синтетический парафин окисляли в высшие жирные кислоты, необходимые для производства различных сортов мыла (гл. 4, стр. 74). Из синтетического парафина можно получить жирные кислоты с большим молекулярным весом, чем у кислот, производимых окислением нефтяного парафина. Олефины с 10—18 атомами углерода превращали с помощью каталитической гидроконденсации с окисью углерода и водородом (оксо-синтез) в альдегиды и первичные спирты (гл. 11,стр. 195). Последние затем переводили обработкой серной кислотой в первичные алкилсуль-фаты с длинной цепью углеродных атомов. Пропилен и бутилены гидратировали в соответствующие спирты, которые затем дегидрировали в кетоны (гл. 8, стр. 149, и гл. 17, стр. 314 и 329). Из других областей применения продуктов каталитического гидрирования окиси углерода в Германии следует назвать производство синтетических смазочных масел, описание которого выходит за пределы данной книги. [c.63]

    Значение пластмасс и некоторых продуктов органического синтеза существенно возрастет в будущем, хотя основным источником сырья для их получения пока является нефть с очень высоким ИИР (13,1%). Положение может быть изменено к лучшему, если удастся сократить расходы нефтепродуктов для топливных целей. В настоящее время на нефтехимические синтезы расходуется 5—67о всей нефти, но к-2000 г. эта доля возрастет до 15%. Следует отметить, что разведанные запасы нефти сейчас оцениваются величиной 120 млрд. т. Но предполагается, что к 2000 г. эти запасы будут расширены до 270 млрд. т. В современном нефтехимическом синтезе в основном используются низшие ненасыщенные ациклические и ароматические углеводороды. Эти соединения получают пиролизом газообразных парафинов, легких нефтяных фракций, а в последнее время тяжелых фракций и даже самой нефти. Современные установки для пиролиза укрупнены настолько, что могут производить от 500 до 700 тыс. т в год ненасыщенных углеводородов. В результате переработки нефти получают много продуктов, среди которых важнейшими являются низшие олефины и диолефины (этилен, пропилен, бутадиен и изопрен), ароматические соединения (бензол, толуол, ксилол) и газовая смесь оксида углерода (П) с водородом. Эти вещества — исходное сырье для многих тысяч промежуточных и конечных продуктов, некоторые из них указаны на рисунке 8. Переработка алифатических, алициклических и ароматических углеводородов осуществляется с помощью таких процессов, как дегидрогенизация, окисление, хлорирование, сульфирование и т. д. [c.71]


    Из широко применяемых сжатых газов горючими являются водород, ацетилен, метан, нефтяные газы (этан, пропан, бутан, этилен, пропилен), светильный газ. Эти газы горят на воздухе, и смеси их с воздухом, а в особенности с кислородом, взрывоопасны. [c.15]

    Большое распространение в промышленности получили углеадсорбционные заводы, на которых хроматографическим способом выделяют бензин из нефтяных газов. Кроме того, за рубежом распространены установки гиперсорбции, на которых из природных газов и газов высокотемпературного крекинга и риформинга методом непрерывной хроматографии выделяют водород, метан, этан, этилен, -ацетилен, пропилен, бутилен и другие газы, необходимые для нефтехимической промышленности. [c.4]

    В принятой схеме четкость разделения пропорциональна молекулярным весам углеводородов, что соответствует требованиям нефтяной промышленности, для которой наибольшее значение имеют углеводороды с четырьмя атомами углерода в молекуле на втором месте находятся пропилен и пропан этилен, этан и метан для химической переработки внутри нефтезаводов (если не считать конверсии в водород, для которой не требуется индивидуальных веществ) не представляют интереса. [c.40]

    Главным образом от температуры зависят также состав и выход продуктов. При ее повышении жидкие продукты расщепления все более обогащаются ароматическими соединениями, а газ — водородом и низшими углеводородами. Так, термическое разложение нефтяных фракций при 500—550°С дает смесь жидких веществ, отличающуюся от исходной фракции в основном появлением в них олефинов, а получаемый газ состоит преимущественно из углеводородов Сз—С4 с суммарным выходом олефинов a 4 % на исходное сырье. Повышение температуры до 750—850°С приводит к тому, что жидкие продукты ароматизируются на 85—95 %, а в газе остается все меньше парафинов Сз—С4 и он обогащается пропиленом и особенно этиленом. Суммарный выход олефинов С2—С4 на исходное сырье достигает при пиролизе этана и пропана 60—80 % (масс.) и при пиролизе бензина 40- 50% (масс.). В газообразных продуктах появляются диены и ацетилены, причем выход наиболее ценного бутадиена-1,3 из бензина составляет 4—5%. При дальнейшем повышении температуры выход олефинов, проходя через максимум при 800—900 °С, начинает падать и образуется все больше водорода и ацетилена. [c.38]

    Продукты эти большей частью вырабатываются в значительных количествах (отсюда и название — тяжелый органический синтез), и для их получения используются чаще всего непрерывные процессы с применением катализаторов нередко реакции протекают при высокой температуре, а иногда и при высоком давлении. В качестве сырья в основном органическом синтезе используют простые по строению веп .ества, преимущественно газы. Это углеводороды жирного ряда парафины (метан и его гомологи), олефины (этилен, пропилен, бутилены) и ацетилен, а также окислы углерода (окись и двуокись), водород, водяной пар. В меньших количествах применяются также ароматические углеводороды и их производные. Все эти вещества получают переработкой нефти, ископаемых углей, природного газа они содержатся в природном и попутном нефтяном га.зе (парафины), газах нефтепереработки (парафины и олефины) и в коксовом газе (этилен, пропилен, метан, водород). Двуокись углерода обычно выделяют из различных газов — отходов других производств. [c.254]

    Главные представители класса. Важнейшим промышленным источником низших алкенов является крекинг-газ — побочный продукт нефтяной промышленности. Он содержит, кроме водорода и алканов Сх—С4, низшие алкены этилен, пропилен и бутилены. Для их применения алкены необходимо выделить в более или менее чистом виде из крекинг-газа. Это сравнительно сложный процесс, который осуществляется дробной перегонкой (при высоком давлении и низкой температуре), абсорбцией более тяжелыми нефтяными фракциями с последовательной дробной десорбцией, селективной адсорбцией ва твердых адсорбентах (например, на активированном угле) также с последовательной дробной десорбцией или же химическим связыванием (например, за счет образования комплексных соединений этилена с растворами хлористой меди, устойчивых только при высоком давлении). [c.266]

    Этилен образуется из элементов (водорода и углерода) при атмосферном давлении и при очень высоких температурах (около 2000° С) 1141]. Кроме того, в большем или меньшем количестве он образуется наряду с другими углеводородами, главным образом метаном, этаном и пропиленом, нри всех высокотемпературных процессах расщепления насыщенных и ненасыщенных углеводородов и других органических соединений. По этой причине этилен всегда содержится в светильном газе [142], генераторном водяном газе и в других газообразных продуктах высокотемпературных процессов. Такие газовые смеси обычно не применяются для получения этилена из-за невысокого содержания в них этого углеводорода. Зато значи-гельным источником этилена являются газы, выделяющиеся при высокотемпературной переработке нефти и некоторых продуктов нефтяной промышленности. Особенно при газофазном крекинге (так называемый гиро-процесс ) [143], при котором пары нефти в смеси с парами воды пропускаются через контактную массу (в частности, через окись железа) при температуре 550—600°, в результате чего получается смесь газообразных углеводородов с содержанием этилена до 27% [144, 145]. Этилен образуется также в большом количестве при пиролизе природного газа. Па выход этилена большое влияние оказывают условия реакции. Реакционная смесь, получаемая путем пиролиза природного газа при 880°, содержит около 30% этилена [146]. [c.38]


    Газы, получаемые разложением нефти при высокой тешхературе состоят главным образом из легких углеводородов, водорода, затенс также углекислоты и окиси углерода и следов азота. Из углеводородов содержатся главным образом метан, этан, этилен, пропилен н бутилены. Зна штельно меньшую роль играют пары амиленов и бензола, 1,3-бутадиен (эрнтрен), изопрен и др. Говоря о нефтяном газе, получаемом прп температурах около 1000°, можно указать, что-95% углеводородной части газа представлены 6—8 индивидами, отмеченными в таблице 84 звездочкой. [c.380]

    Образующиеся технологические газы, выходящие из печи, охлаждаются с большой скоростью. Необходимость в скоростной закалке связана с тем, что при температурах значительно ниже реакционной (около 800 °С) олефиновые продукты парового крекинга менее стабильны, чем материнские насыщенные углеводороды (см. гл. 2). Для предотвращения дальнейшего пиролиза до углерода и смолистых веществ олефиновые продукты должны охлаждаться очень быстро. Однако даже при соблюдении этого условия во всех реакторах парового крекинга образуется пиролизное нефтяное топливо, количество которого возрастает с увеличением молярной массы сырья. Высококипящие нефтеобразные полупродукты сепарируются при фракцинации, а основной поток газов компримируется перед очисткой от примесей кислых газов и воды. Вслед за этим олефиновые продукты проходят стадии низкотемпературной фракционной разгонки сначала Сг извлекается из водорода и топливного технологического метана, затем Са — из Сз (в деэтанизаторе, устанавливаемом после отгонной колонки, где этилен сепарируется из донного этана), а Сз — из С4 (в депропанизаторе, стоящем после специальной колонки, где пропилен сепарируется из донного пропана) и, наконец, смесь непрореагировавших бутанов, бутадиенов и бутены — из дистиллята парового крекинга, состоящего из богатой смеси бензола, толуола и некоторых ксилолов (в дебутанизаторе). В эту слож- [c.257]

    Природный газ чисто газовых месторождений содержит в основном метан. Попутный нефтяной газ наряду с метаном содержит в заметных количествах и другие углеводороды парафинового ряда (этап СдНе, пропан СзНя, бутан Нц), пентан С5Н]2). В некоторых искусственных газах, например в газе пиролиза нефти, содержатся в больших количествах углеводороды олефинового ряда (этилен С2Н4, пропилен СзНе, бутилен С Пв). При нагревании все эти углеводороды разлагаются с образованием в конечном итоге углерода и водорода. [c.29]

    В зависимости от выбранного сорбента и температурного поля могут быть проанализированы природный нефтяной газ и газы, сорбированные водой и породой (водород, метан, этан, пропан, бутап, пеитаи, гексан, гептан) рефлюкс пропановой и бутановой колонн (этап, этилен, пропан, пропилен, изобутан, бутан) сухой газ крекинга нефти (водород, метан, этап, этилен, пропан, пропилен, изобутан, бутан, бутилепы, пентан) низкокинящие газы (Нз, Не, СО, СН4, Аг). [c.311]

    Гусейнова 3. Д., Веляев Я. Р., Камбаров Ю. Г. Низкотемпературный метод выделения концентрированного водорода из газов пиролиза абсорбцией метана пропиленом. — Азербайджанское нефтяное хозяйство, 1972, № 4, с. 36-38. [c.209]

    Нефтяные газы образуются в процессе крекинга при 400—450°С и пиролиза нефти при 700°С и содержат кроме этилена водород, метан, этан, пропан, пропилен, бутан, изобутплен и т. д. Попутные газы, выделяющиеся при добыче нефти и содержащие в основном парафиновые углеводороды метан, этан, пропан, бутан и т. д., подвергаются высокотемпературному крекингу, в результате чего превращаются в этилен с достаточно высоким выходом. [c.30]

    Хлористый винил получают из ацетилена или этилена. Наша страна богата газами, содержащими эти вещества. Это природные и попутные газы, добываемые из газовых и нефтяных м есторозкдений, нефтезаводские газы, образующиеся в процессе переработки нефти. Сырьем для получения ацетилена и этилена могут служить я жидкие углеводороды, получающиеся при разгонке нефти (напрИ мер, бензин). В химической промышленности природный газ используется в основном для получения ацетилена, а также водорода и синтез-газа из попутных и нефтеза-водских газов и из яшдких углеводородов вырабатывают этилен, пропилен ж бутилен. [c.12]


Смотреть страницы где упоминается термин Водород из нефтяных пропилена: [c.191]    [c.83]    [c.83]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.954 ]




ПОИСК







© 2025 chem21.info Реклама на сайте