Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ацетиленовые углеводороды реакции присоединения

    Ацетиленовые углеводороды (алкины) способны вступать в реакции присоединения, замещения, окисления, полимеризации и конденсации с карбонилсодержащими соединениями. [c.86]

    Ацетиленовым углеводородам свойственны реакции присоединения и замещения. [c.312]

    Гибридные состояния углерода и 5р. Строение и особенности двойной и тройной связи. Изомерия и номенклатура этиленовых и аце тиленовых у1 леводородов. Геометрическая цис-, транс-) изомерия Способы получения. Физические и химические свойства алкенов и ал кинов. Реакции присоединения. Правило В. В. Марковникова. Исклю чение из этого правила (Хараш). Реакции окисления. Полимеризация Свойства ацетиленового водорода. Классификация и получение диено вых углеводородов. Физические и химические свойства. Эффект сопря жения. 1,4-Присоединение, Диеновые синтезы. Полимеризация диено вых углеводородов. Каучуки синтетические и натуральные. УФ и ИК спектры этиленовых и ацетиленовых углеводородов. [c.169]


    Реакции присоединения. Ацетилены обладают большей ненасы-щенностью, чем олефины (алкены). В реакциях присоединения они могут взаимодействовать с двумя молекулами водорода, галогена и т. д, Для ацетиленовых углеводородов, как и для этиленовых, свойственны реакции электрофильного присоединения. Однако, учитывая характер хр-гибридизации углеродных атомов в ацетилене, при которой электроны, располагаясь ближе к ядру, втянуты внутрь молекулы, для алкинов будут более характерны реакции нуклеофильного присоединения. [c.86]

    АЦЕТИЛЕН (этин) СН=СН - первый член гомологического ряда ацетиленовых углеводородов. Бесцветный газ, хорошо растворяется в ацетоне и хлороформе. А. открыт в 1836 г. Дэви, синтезирован в 1862 г. Бертло с угля и водорода, получен из карбида кальция в том же году Велером. В промышленности А. получают из карбида кальция, электронрекингом нли термоокислнтель-ным крекингом из метана. Смеси А, с воздухом взрывоопасны. А. чрезвычайно реакционноспособное непредельное соединение. Молекула А. имеет линейное строение. Расстояние между углеродными атомами составляет 1,20 А, углерод находится в молекуле А, в третьем валентном состоянии (ер-гибридизация), атомы углерода связаны одной о- и двумя я-связями. Для А. характерны реакции присоединения галогенов, галогеноводородов, воды (в присутствии солей ртути), цианистоводородной кислоты, оксида углерода, спиртов, кислот, водорода и др. Атомы водорода в молекуле А, можно заместить щелочными металлами, медью, серебром, магнием. [c.36]

    Большое значение имеет присоединение воды к ацетиленовым углеводородам. Реакция протекает при участии катализаторов (реакция Кучерова). Так, из ацетилена получается уксусный альдегид (катализатор — соли окиси ртути в сернокислом растворе) [c.333]

    Практически все известные для этиленовых соединений реакции электрофильного присоединения можно провести и с ацетиленовыми углеводородами и их производными. Однако вследствие большей электроотрицательности 5 г7-гибридных атомов углерода ацетилена я-электроны тройной связи более жестко связаны с ядрами, чем в этилене. На это, в частности, указывают значения потенциалов ионизации двойной (10,50 эВ) и тройной (11,40 эВ) связей. Электро-нодонорные свойства тройной связи ниже, чем у двойной, поэтому ацетиленовые соединения вступают в реакции с электрофилами примерно в 10 раз труднее, чем близкие нм по строению этиленовые. Для ускорения этих реакций рекомендуется применение катализаторов. Наиболее часто используются апротонные кислоты (галоге-ниды алюминия, бора, меди н ртути)  [c.118]


    Гидратация ацетиленовых углеводородов. Как было указано, присоединение воды к углеводородам с тройной связью (реакция Кучерова, стр. 86) приводит к образованию карбонильных соединений. Из ацетилена при этом образуется альдегид (уксусный), а из его гомологов получаются кетоны. [c.148]

    Основные научные работы посвящены химии фосфорорганических соединений. Изучал (1945— 1950) аллильные и ацетиленовые перегруппировки, реакции присоединения к диеновым углеводородам. Открыл (1954) реакцию получения эфиров фосфоновых кислот, заключающуюся в присоединении неполных эфиров алкил(арил)фос-финистых и фосфористой кислот к непредельным соединениям открыл (1955—1960) новые перегруппировки фосфонат-фосфатного типа и термические перегруппировки аллиловых и пропаргиловых эфиров фосфористой кислоты. Изучал различные реакцнп эфиров и ангидридов фосфористой кислоты, амидофосфитов и других фосфорорганических соединений с электрофильными реагентами, которые не содержат атомы галогенов. Получил (1965—1975) ряд новых типов фосфорорганических мономеров и полимеров. [c.413]

    Реакция присоединения хлористого водорода к ацетиленовым углеводородам типична для соединений с тройной связью  [c.132]

    Химические свойства. Ацетиленовым углеводородам, так же как и этиленовым, свойственны реакции присоединения по месту кратной связи, в данном случае тройной. [c.85]

    Алкины — углеводороды с тройной связью с общей формулой С Н2я-2. Простейший алкин НС=СН, называемый этином или ацетиленом, широко используется в кислородно-ацетиленовых горелках, в которых пламя имеет очень высокую температуру (3200 К). Алкины, будучи ненасыщенными соединениями, обладают высокой реакционной способностью. Они легко вступают в реакцию присоединения, превращаясь в алкены или алканы и их производные, например  [c.304]

    Исходные в этих реакциях дигалогенпроизводные с атомами галогена при соседних атомах углерода могут быть получены присоединением галогенов к этиленовым углеводородам (стр. 69). Следовательно, углеводороды с двойной связью через дигалогенпроизводные могут быть превращены в ацетиленовые углеводороды (с тройной связью). [c.89]

    Для предельных углеводородов характерна устойчивость к различным реагентам, типичны для них реакции замещения, особенно радикального — 5 , непредельные углеводороды значительно более реакционноспособны, для них характерны реакции присоединения, главным образом электрофильного реакции окисления и полимеризации, а для ацетиленовых, кроме того, реакции замещения водорода при тройной связи на металл. В последней реакции проявляются некоторые кислотные свойства ацетилена, обусловленные больщей электроотрицательностью (выражающейся цифрой 3,1) атома углерода в состоянии <р-гибридизации по сравнению с и -гибридизацией (электроотрицательность соответственно 2,8 и 2,5), что вызывает сдвиг электронных плотностей в молекуле  [c.25]

    Все характерные для олефинов реакции присоединения протекают с ацетиленовыми углеводородами значительно легче. [c.53]

    Ацетиленовые углеводороды являются в еще большей мере ненасыщенными, чем этиленовые углеводороды. Поэтому ацетиленовые углеводороды легко вступают в реакции присоединения. Их молекулы способны присоединить четыре атома водорода или галоида или две молекулы галоидоводорода. [c.91]

    Реакция хлора с ацетиленовыми углеводородами вначале идет с трудом, однако через некоторое время протекает со взрывом. Применение катализаторов облегчает начало присоединения хлора и смягчает условия реакции. [c.561]

    Недавно предложенная модификация этой реакции расширяет область присоединения к ацетиленовым углеводородам [66  [c.133]

    Для метилацетилена, как и для других ацетиленовых углеводородов, характерна высокая реакционная способность. Он легко вступает в реакции присоединения, замещения, изомеризации и полимеризации. [c.368]

    На основе результатов исследования реакций гидрирования олефиновых, диеновых и ацетиленовых углеводородов можно отметить общие черты и особенности каталитического действия катионных форм цеолитов в сравнении с катализаторами других классов. Так, по некоторым свойствам, проявляемым в реакциях гидрирования, цеолиты близки к металлическим катализаторам. Сюда относятся дейтероводородный обмен в олефинах, происходящий при дейтерировании пиперилена, и отсутствие этого обмена в исходном диеновом углеводороде. Распределение изомерных пентенов при гидрировании пиперилена, соответствующее равновероятному присоединению водорода к системе сопряженных двойных связей, также сближает цеолиты с металлическими катализаторами. И наконец, ч< < присоединение водорода к тройной углерод-углеродной связи при гидрировании ацетиленовых углеводородов, характерное для металлических катализаторов, происходит и на катионных формах цеолитов. [c.75]


    Присоединение воды (реакция Кучерова). Молекула воды присоединяется к ацетиленовым углеводородам в присутствии солей двухвалентной ртути в сернокислом растворе. При этом из ацетилена получается уксусный альдегид, из гомологов ацетилена - кетоны  [c.84]

    Реакция присоединения брома к непредельным углеводородам широко применяется в органическом анализе для открытия и количественного определения этиленовых и ацетиленовых связей. Количество брома в граммах, присоединяющегося к 100 г органического вещества, получило название бромного числа. Скорость реакции присоединения галогена к непредельным углеводородам зависит от строения углеводорода, катализатора, температуры и других факторов. [c.116]

    Реакция присоединения, ацетиленовых углеводородов к карбонильным группам протекает с участием карбаниона, образовавшегося в результате смещения подвижного водорода собственно ацетиленовой структуры под действием оснований (б)  [c.249]

    Открытие Кучерова в области гидратации ацетиленовых соединений сыграло выдающуюся роль соли ртути оказались превосходными и потому трудно заменимыми катализаторами как для ускорения, так и для обеспечения полноты конверсии в реакциях присоединения элементов воды по тройной связи. Начиная примерно с 1915 г., когда была впервые для этой реакции применена уксуснокислая ртуть [44], и до 40-х годов ведущим способом гидратации ацетиленовых углеводородов в промышленности являлся способ Кучерова, модернизированный со временем ацетиленовый углеводород растворялся в уксусной кислоте или в смеси уксусной кислоты с другими органическими растворителями, содержащим и воду, а вода присоединялась под влиянием уксуснокислой или сернокислой ртути. [c.269]

    РЕАКЦИЯ ПРИСОЕДИНЕНИЯ К АЦЕТИЛЕНОВЫМ И ДИЕНОВЫМ УГЛЕВОДОРОДАМ ОРГАНИЧЕСКИХ КИСЛОРОДСОДЕРЖАЩИХ СОЕДИНЕНИЙ [c.207]

    Реакции присоединения к ацетиленовым и диеновым углеводородам [c.208]

    ГИДРАТАЦИЯ И ДЕГИДРАТАЦИЯ КАТАЛИТИЧЕСКИЕ —реакции присоединения (гидратация) или отщепления (дегидратация) воды от органических соединений. Г. и Д. к.— одни из основных реакций органической химии. Основными видами реакций гидратации являются гидратация олефинов в спирты, ацетиленовых углеводородов в альдегиды и кетоны, нитрилов в амиды. На этих реакциях основываются промышленные способы производства важнейших продуктов органического синтеза. Реакции дегидратации составляют основу большинства реакций поликонден-сацин, играющих огромную роль при получении полимеров, алкидных или гли-фталевых смол, полиамидных волокон (найлона), мочевиноформальдегидных смол 1 др. [c.72]

    Исследования реакций присоединения солей к ненасыщенным веществам составляют теперь особый раздел в химии органических соединений тяжелых металлов. Отдельные работы иностранных авторов пе дали в этом направлении однозначных и убедительных результатов. После работ Кучерова но присоединению ртутных солей к ацетиленовым углеводородам реакции присоединения ртутных солей но двойной связи впервые, в 900-х годах, наблюдали Гофман и Занд [128, 129]. Первоначально они считали, что продукты присоединения имеют структуру металлооргапических веществ. Подметив ряд свойств, указывающих на легкость распада этих продуктов под влиянием галоидоводородных кислот на первоначальные исходные вещества, Занд пересмотрел свою точку зрения и высказал предположение о наличии таутомерии  [c.192]

    При сульфировании ацетиленовых углеводородов действие столь активных агентов, как например дымящая серная кислота, приводит не только к двукратному присоединению —ОН и —ЗОзН по тройной связи, но также к окислению и последующему разрыву связи С—С, с образованием дисульфокислоты и карбоновой кислоты. Так, при действии 65%-ного олеума на ацетилен получается метандисульфокислота (метионовая кислота), образование которой можно представить как результат следующих реакций, где первично образовавшаяся ацетальдегиддисульфокислота гидролизуется затем в метио-новую и муравьиную кислоты  [c.122]

    Для ацетиленовых углеводородов характерны реакции элек-трофилъного присоединения (Вгз, Н2, ННа1, Н2О), многие из которых могут протекать в две стадии. На первой стадии идет присоединение к тройной связи с образованием двойной связи, а на второй стадии — присоединение к двойной связи. Реакции присоединения к несимметричным ацетиленовым углеводородам протекают по правилу Марковникова. Многие реакции присоединения протекают в присутствии катализаторов. Так, присоединение воды к алкинам (реакция Кучерова) происходит в присутствии солей ртути (II) в кислой среде. На первой стадии реакции образуется непредельный спирт, в котором группа —ОН находится у атома углерода при двойной связи. Такие спирты неустойчивы, и в момент образования они изомеризуются в более стабильные карбонильные соединения (ацетальдегид или кетоны). [c.307]

    Изомеризацию диолефинов и алкилацетилена объясняли как процесс сме щения положения двойной или тройной связи или превращения тройной связи в две двойные связи без изменения скелета углеродных атомов. Фаворский [11], исследуя изомеризацию ацетиленовых углеводородов, нашел, что при обработке спиртовым раствором поташа в течение 24 часов при 170° пропилацетилен превращается в метилэтилацетилен, который не полимеризуется с серной кислотой. Эта изомеризация происходит также с алкоголятом натрия. Фаворский предполагал, что изомеризацию ацетиленовых углеводородов можно объяснить последовательными реакциями присоединения алкоголята щелочного металла и отщепления молекулы спирта, которые приводят к образованию алленового углеводорода, из которого таким же путем получается изомерный ацетиленовый углеводород с иньш расположением тройной связи. Такие ацетилены, как изо-лропилацетилен, должны реагировать лишь до стадии аллена, это предположение Фаворский подтвердил опытом. [c.663]

    Пока нет ни одного исследования или натентиого сообщения по применению BFg и его молекулярных соединений для присоединения к ацетиленовым углеводородам сероводорода и меркаптанов. Эта реакция, как видно из обзора И. Л. Кнунянца и А. В. Фокина [31], изучена с ря- [c.210]

    Пока нет ни одного исследования или патентного сообщения по применению ВРз и его молекулярных соединений для присоединения к ацетиленовым углеводородам сероводорода и меркап-Т31ЮВ. Эта реакция, как видно из обзора И. Л. Кнунянца и А. В. Фокина [31], изучена с рядом других катализаторов. Можно не сомневаться, что ВРз в указанной реакции будет обладать высокой каталитической активностью благодаря его способности образовывать с тиосоединениями высокоактивные комплексы. [c.254]


Смотреть страницы где упоминается термин Ацетиленовые углеводороды реакции присоединения: [c.59]    [c.117]    [c.23]    [c.74]    [c.140]    [c.52]   
Методы эксперимента в органической химии (1968) -- [ c.123 , c.124 , c.131 , c.654 , c.658 , c.663 ]




ПОИСК





Смотрите так же термины и статьи:

Ацетиленовые присоединения

Ацетиленовые углеводороды

Реакции присоединения

Углеводороды, присоединение



© 2025 chem21.info Реклама на сайте