Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Горелка ацетиленовая

    Ацетиленовые и кислородные редукторы служат для поддержания постоянным рабочего давления газа перед горелкой независимо от изменения давления газа в баллоне (или газогенераторе). Кислородные редукторы окрашивают в синий цвет, [c.216]

Рис. 77. Схема кислородно-ацетиленовой горелки Рис. 77. <a href="/info/158269">Схема кислородно</a>-ацетиленовой горелки

    Алкины образуют еще один ряд ненасыщенных углеводородов. В молекулах этих соединений имеется одна или несколько тройных углерод-углеродных связей. Простые алкины имеют общую эмпирическую формулу С Н2 2- Простейший представитель ряда алкинов, ацетилен, обладает высокой реакционной способностью. При горении ацетилена в токе кислорода в так называемой кислородно-ацетиленовой горелке образуется пламя с очень высокой температурой, приблизительно 3200 К (см. разд. 21.4). Кислородно-ацетиленовые горелки широко используются при сварке, где требуются высокие температуры. Алкины вообще очень реакционноспособные вещества. Вследствие этого они не столь широко распространены в природе, как алкены, однако являются важными промежуточными продуктами во многих промышленных процессах. [c.416]

    На рис. 1 показаны принципиальные схемы ацетиленовых реакторов для термоокислительного пиролиза метана. Основные части реактора — смеситель, горелка п корпус. В корпусе реактора под горелкой располагается реакционная зона и зона закалки. [c.9]

    При пайке латунью используют нормальное пламя ацетиленовой горелки. Предварительно поверхность покрывают тонким слоем латуни, а затем заполняют весь щов. [c.216]

    Горелки ацетиленовые для автомобилей. .....1072 [c.1134]

    Идеальным ацетиленовым реактором является аппарат, в котором смеситель непосредственно соединен с горелкой, чтобы время нахождения метано-кисло-родной смеси между смесителем и зоной горения было минимальным. Большое значение для безопасной работы смесителя имеет соотношение скоростей смешиваемых потоков. Известно, что лучшее смешение достигается при определенном соотношении скоростей. [c.55]

    Термический способ. Этот способ очистки основан на быстром и интенсивном нагреве очищаемой поверхности кислородно-ацетиленовыми горелками и последующем ее охлаждении. Вследствие разности теплофизических характеристик окалины и металла происходит растрескивание окалины и отслоение ее от металлической поверхности. Ржавчина при очистке пламенем обезвоживается в результате удаления из нее химически связанной воды н рассыпается в мелкий черный порошок. Производительность очистки этим способом невелика (не более 5 м /ч). Его можно применять только для очистки металла толщиной более 5 мм, так как при очистке тонкостенных изделий может произойти деформация металла. Кроме того, данный способ пожароопасен. [c.466]


    ДРУГИЕ МЕТОДЫ. При термической очистке окалина спекается и отслаивается от поверхности в результате нагревания кислородно-ацетиленовой горелкой. Можно использовать также атмосферное воздействие в течение нескольких недель или месяцев при этом на поверхности происходит естественное образование ржавчины, способствующее отслаиванию окалины, которая затем [c.253]

    Горелка-атомизатор для воздушно-ацетиленового пламени. [c.162]

    Более новый, непрерывный процесс получения ацетиленовой сажи основан на нагревании ацетилена до температуры его разложения (500—600°) при смешении струи свежего ацетилена с раскаленными до 2500° продуктами разложения. Процесс осуществляется в стальном реакторе с охлаждаемыми водой стенками. Первоначально реактор разогревается сжиганием части ацетилена кислородом в специальной горелке. В дальнейшем процесс идет непрерывно за счет выделяющегося при реакции тепла. [c.550]

    Ацетилен применяют для сварки и резки металлов. Температура пламени ацетиленовой горелки 3500°С. [c.336]

    Пламя, В некоторых случаях для возбуждения свечения элементов достаточно внести испытуемое вещество в ацетиленовое пламя или пламя газовой горелки. Обычно исследуемое вещество в виде его хлористоводородного раствора вдувают в пламя. Для этого применяют распылитель (рис. 80). Исследуемую жидкость помещают в углубление 1. [c.229]

    Алкины — углеводороды с тройной связью с общей формулой С Н2я-2. Простейший алкин НС=СН, называемый этином или ацетиленом, широко используется в кислородно-ацетиленовых горелках, в которых пламя имеет очень высокую температуру (3200 К). Алкины, будучи ненасыщенными соединениями, обладают высокой реакционной способностью. Они легко вступают в реакцию присоединения, превращаясь в алкены или алканы и их производные, например  [c.304]

    Кислород применяется для резки и сварки металлов (ацетиленово-кислородные и водородо-кислородные горелки) для плавления кварца и получения искусственных драгоценных камней и др. Кислород, или обогащенный кислородом воздух, находит большое применение в черной и цветной металлургии, в доменном процессе, в сталеплавильном производстве, в газогенераторах. Благодаря увеличению концентрации кислорода химические процессы протекают с большими скоростями, что приводит к интенсификации различных производств, потребляющих кислород. [c.560]

    Кислород находит самое разнообразное применение при выплавке чугуна и стали (дутье), при обжиге сульфидных руд в производстве цветных металлов, в ацетиленовых горелках ( = 3000 °С). Жидкий кислород — окислитель топлива в ракетных двигателях. Кислород применяется в медицинской практике и различных химических производствах. Соединения кислорода — оксиды металлов — составляют основу современных неорганических материалов для электронной техники. [c.112]

    Применение кислорода. Получаемый в промышленности кислород часто применяют для сжигания в нем различных газов, например ацетилена и водорода (в специальной горелке, состоящей из двух трубок, вставленных одна в другую). Температура ацетиленово-кислородного пламени достигает 3000 °С, в нем плавится железо это пламя применяют для автогенной сварки, резания и сверления металлов. [c.377]

    Кислородно-ацетиленовые горелки используются при резке и сварке металлов. Благодаря своей ненасыщенности ацетилен используется как исходное вещество при получении различных органических соединений. Однако здесь ацетилен вытесняется более дешевым этиленом. В промышленности ацетилен получают из природного газа. Главным продуктом неполного сгорания метана, основного компонента природного газа, является ацетилен  [c.594]

    Преимущества и недостатки этого процесса и пламенной металлизации во многом аналогичны. Заменив кислородно-ацетиленовую горелку на электрическую дугу, можно получить более портативное оборудование. Благодаря повышению температуры Б электродуговом процессе по сравнению с пламенным можно использовать для покрытия металлы с более высокой точкой плавления. Так как все тепло, требуемое для плавления, концентрируется в зоне плавления, то основной металл при напылении нагревается меньше, чем в пламенном процессе. При использовании этого метода получают покрытия с более высокой прочностью связи (примерно 10 МН/м ). [c.80]

    В лаборатории, за немногими исключениями, обычно применяются горелки, в которых происходит сгорание газа. В продаже имеются горелки самих разнообразных типов. Они дают возможность нагревать небольшой тигель до 700—800 °С, а при применении дополнительной насадки, концентрирующей газ, до 900 °С. Для получения еще более высоких температур служат общеизвестные паяльные горелки. Очень горячее пламя можно получить, добавляя к поступающему воздуху кислород через Т-образную трубку. В продаже имеются также горелки с точной дозировкой добавляемого к воздуху кислорода. Для нагревания на открытом воздухе небольших объектов можно воспользоваться обычной ацетиленовой сварочной горелкой. [c.53]


    Только для тиглей из спеченного глинозема (АЬОз) было установлено, что самые малые из них с внешним диаметром около 15 мм могут быть сплавлены с подходящими к ним по размерам пробками в пламени ацетиленово-кислородной сварочной горелки [12]. Тигель, имеющий форму, изображенную на рис. 485, может быть наполнен металлами приблизительно на 1/4 своей высо- [c.2151]

    Метан и кислород, предварительно подогретые до высокой температуры, поступают в смеситель. В зависимости от конструкции горелки ацетиленового реактора газовая смесь поступает в реакционную зону по кольцевой щели (рис. 1,в) либо через большое количество отверстий малого диаметра (рис. , а и 1,6). Стабилизация процесса горения осуществляется путем подвода некоторого количества кислорода (2—6%) к основанию факела. Чтобы предотвратить отложение сажи на поверхности горелки и в реакционной зоне, пред- сматривается механическое сажеочистное устройство или подача воды, стекающей тонкой пленкой по стенкам реакционной зоны. [c.9]

    При хорошей инжекции в ацетиленовом канале и герметичности всех разъемных соединений горелки ацетиленовый рукав присоединяют к источнику газопитания (ацетиленовому переносному генератору, газопитающей сети или ацетиленовому редуктору баллона). При присоединении к редуктору устанавливают давление ацетилена в соответствии с паспортом и зажигают пламя. Пламя должно иметь ровную округлую форму. [c.19]

    Конструктивное оформление горелок ацетиленовых реакторов в настоящее время различно. Некоторые типы горелок выполняются в виде отдельных каналов диаметром до 20—30 мм, другие — в виде кольцевого сечения с завихрителями и т. д. В горелках любой конструкции скорость истечения газа должна быть несколько больше скорости гооения сжигаемой метано-кисло-родной смеси (30—75 см/сек при ламинарном горении). Поскольку на практике обычно происходит турбулентное горение, скорость которого значительно больше скорости ламинарного горения, скорость истечения метано-кислородной смеси из горелок промышленных реакторов находится в пределах от 40 до 300 м/сек. [c.55]

    Обязательным условием безопасности и надежност процесса горения метана в ацетиленовом реакторе яе ляетсл нормальная работа всех частей аппарата. Н практике, несмотря на соблюдение перечисленных уело ВИЙ с учетом особенностей работы горелок в ацетилено вых реакторах, возможны проскоки пламени в зон смешения или преждевременное возгорание метано-кис лородной смеси, что иногда приводит к выходу из стро горелки или смесителя. [c.56]

    Сварку проводят ацетилеиокислородиым пламенем с добавлением присадочного материала. Для получения ацетилена используют генераторы различных типов, основные данные кото-ры. приведены в табл. 3.9, или баллоны с ацетиленом и другими горючими газами (водородом, пропап-бутановой смесью и др.). Ацетиленовые генераторы выпускаются производительностью 0,5—320 м ч ацетилена. Генераторы могут быть передвижные п стационарные. Передвижные генераторы имеют производительность до 3 м /ч. Генераторы по давлению делятся на три группы низкого (до 0,01 МПа), среднего (0,01 — 0,15 МПа) и высокого давления (более 0,15 МПа). Кислород доставляют в специальных баллонах под давлением 15 МПа. Для сварки применяют горелки типов Москва , ГС-3 и другие, которые могут работать с горючими газами, имеющими различный расход в зависимости от номера применяемого наконечника от 50 до 2800 л/ч и с кислородом, имеющим расход соответствеино от 55 до 3100 л/ч. Горелки Москва и ГС-3 имеют семь сменных наконечников. Это позволяет проводить сварку металла различных толщин вплоть до 30 мм одной и той же горелкой. [c.101]

    Тонкостенные детали сваривают газовой сваркой с помощью газовых горелок. Однопламенные универсальные горелки применяют для кислородно-ацетиленовой сварки, пайки и подогрева (ГОСТ 1077—79Е), горелки звездочка (ГОСТ 5.1919— 73)—для тех же целей, горелки типа ГТГМ-66 (ГОСТ [c.264]

    Для превращения растворов анализируемых веществ в атомный пар чаще всего применяют щелевые горелки длиной 5-10 см. Они дово п.но однотипны по конструкции и легко заменяются Большинство приборов рассчитаны на использование в качестве окислителей воздуха, кислорода и закиси азота, а в качестве топлива - гфопана, ацетилена и водорода Наибольшее распространение получило воздушно-ацетиленовое пламя (2200-2400 °С), которое позволяет определять многие высокотоксичные металлы (РЬ, Сс1, Zn, Си, Сг и др.). Для определения элементов с более высокой температурой парообразования (А1, Ве, Мо и др.) широкое признание получила смесь закись азота-ацетилен (3100-3200 С), поскольку она более безопасна в работе, чем смеси с кислородом. Для обнаружения мышьяка и селена в виде гидридов требуется восстановительное гшамя, образующееся при сжигании водорода в смеси аргон-воздух. [c.247]

    Прокаливание. Помешают на крышку тигля (твердое вещество — на кончик шпателя) О, i мл (0,1 г) вещества. Осторожно вносят в верхнюю или боковую часть бесцветного пламени горелки, гюстепенно продвигая крышку в более горячую часть пламени. Внимательно наблюдают за происходящими изменениями вещества. Записывают характер плавления (разлагается ли вещество) и горения (быстрое, со вспышкой, медленное), цвет пламени, запах. Если вещество горит слабосве-тящим пламенем (почти голубое), это указывает на присутствие в нем кислородсодержащих функциональных групп. Желтое светящееся (коптящее) пламя характерно для богатых углеродом соединений (ароматические и ацетиленовые углеводороды). [c.122]

    Карбид кальция СаСз применяется для получения ацетилена. При сгорании СаНа в кислороде развивается температура до 3000 °С (ацетиленовые горелки). [c.262]

    Определение утечки с помощью галоидных ламп (широко распространенный метод). Принцип действия галоидных ламп основан на том, что продукты разложения фреона в присутствии раскаленной меди окрашивают бесцветное пламя горелки и увеличивают высоту факела. Высокая чувствительность галоидных ламп реализуется в полной мере, если утечка определяется в хорошо проветренном помещении. В зависимости от применяемого топлива существует несколько типов галоидных ламп спиртовые, пропановые, бензиновые, ацетиленовые, наиболее чувствительные при работе на пропанбутане. [c.323]

    Термический способ очистки металла от ржавчины, окалины заключается в обработке поверхностей пламенем килородно-ацетиленовой горелки. Этот способ основан на значительной разности коэффициентов расширения металла и окалины. В результате нагрева и последующего охлаждения окалина, имеющая небольшой коэффициент термического расширения, легко растрескивается и отслаивается от основного металла, что значительно облегчает удаление ее с обрабатываемой поверхности. Однако при такой обработке имеется опасность коробления конструкций, особенно тонкостенных. [c.91]

    Необходимую информацию дает также прокаливание. Для этого на крышку тигля помещают 0,1 мл жидкого или на кончик шпателя 0,01 г твердого вещества и вносят крышку или шпатель в верхнюю или боковую часть бесцветного пламени горелки, постепенно передвигая нх в более горячую часть. Внимательно наблюдают за происходящими превращеинями и записывают характер плавления с разложением или без него) и горения (быстрое или медленное, со вспышкой или без нее), отмечают также цвет пламени и запах продуктов горения. Если вещество горит почти голубым пламенем, то в нем присутствуют кислородсодержащие функциональные группы. Желтое светящееся (коптящее) пламя характерно для веществ, богатых углеродом (ароматические и ацетиленовые углеводороды). Отмечают также, полностью сгорает вещество или иет. В последнем случае вещество может представлять собой соль органической кислоты (карбоновой, сульфо- и т. д.). Окраска пламени может указать иа природу катиона. [c.94]

    При смешении горючего газа с воздухом (например, при воздушном дутье) улучшается полнота сгорания газа, увеличивается скорость горения, а при этом повышается и температура пламени. Еще более улучшаются эти показатели при использовании для дутья воздуха, обогащенного кислородом, или (что еще более повышает температуру пламени) чистого кислорода. Так, если максимальная температура пламени светильного газа без дутья составляет 1500—1600°С, то при дутье кислородом ее можно поднять до 2200°С. Температура пламени ацетиленовой горелки составляет 2500 °С, а ацетилено-кислородного пламени — 3500 °С. [c.41]

    Пресс-формы периодически чистят от нагара резины. Чистка заключается в обработке порошкообразным апатитом и известью (пушенкой) на пескоструйном аппарате или в обжиге газовой и ацетиленовой горелками поверхности пресс-формы с последующим протиранием теми же порошкообразными материалами при помощи щеток. Иногда пресс-формы чистят механической щеткой с воздушным приводом. Наибольшее применение нашел способ очистки пресс-форм путем обработки их поверхности гидроабразивным материалом (карбид кремния зеленый) под давлением 0,6—1,0 МПа и промывки горячей водой также под давлением. [c.138]

    Газопламенную обработку кислородно-ацетиленовым пламенем применяют для удаления ржавчины и окалины. Способ осуществим благодаря различным коэффициентам линейного расширения окалины и металла. Однако запрессованую окалину этим способом удалить не удается. Обрабатываемые детали должны иметь толщину не менее 5 мм. Для очистки листовых металлов используют горелки прямой формы шириной 30—200 мм, для труб — кольцевые или сегментные горелки. Для таких горелок применяют системы нагнетания или впрыскивания. Обычно горелки снабжены направляющим роликом для выдерживания необходимого расстояния между факелом и поверхностью. Правильно отрегулированная горелка должна иметь острый факел. Горелку следует устанавливать так, чтобы вершина наиболее горячей зоны факела касалась металла, а угол между направлением пламени и поверхностью составлял 40°. [c.65]

    Атомизации соединений натрия в пламенах. Степень атомизации соединений натрия в различных пламенах стали оценивать сравнительно недавно [200, 347, 583, 638, 694, 789, 911, 1045, 1080, 1268]. Во всех более ранних монографиях отмечали термическую нестойкость соединений натрия в пламенах [397]. В работе [1268] рассчитана концентрация атомов натрия в изолированном воздушно-ацетиленовом пламени горелки Меккера, равная 1,17-10 ат/см при следующих параметрах распылительной системы скорость подачи раствора 3,85 мл/мин, эффективность распыления 4,9 мл/мин, расход воздуха 166 см /с, ацетилена 23 см /с, воды 3,14-10 мл/с, температура пламени 2320 К, начальная концентрация натрия в растворе 10" М. Проверена концентрация свободных атомов натрия с использованием в качестве источника света сплошного излучения. Экспериментально полученные близкие значения указывают на полноту атомизации. Расхождения с результатами Ранна объяснены неучетот сверхтонкой структуры линии с линейчатым источником [1080]. Концентрацию свободных атомов определяли методом атомной абсорбции. [c.117]

    Чувствительность определения ЗЬ с применением пламенных атомизаторов в сильной мере зависит от совершенства используемого прибора, окислительно-восстановительных свойств пламени, высоты просвечиваемой зоны, геометрии горелки и ряда других факторов. Указывается [1391], что при использовании воздушноацетиленового пламени и спектрофотометра Тектрон АА1000 и просвечивания пламени светом лампы с сурьмяным полым катодом на расстоянии 1,5—2 мм от края горелки чувствительность определения ЗЬ в расчете на 1% поглош,ения света для линии 231,15 нм составляет 1,3 мкг 1мл и для линии 217,58 нм — 0,6А мкг/мл. Мостин и Куннингем [1354] считают, что при прохождении пучка света от лампы с сурьмянным полым катодом через воздушно-ацетиленовое пламя на расстоянии 4—10 мм выше уровня горелки достигается наиболее высокая чувствительность определения ЗЬ (спектрофотометр Перкин-Элмер 303, ток полого катода 20 ма, ширина щели монохроматора 1 мм, скорость распыления анализируемого раствора 3,5 мл/мин), которая составляет (на 1% поглощения света) 1,4 мкг/мл для линии 217,58 нм и 2,0 мкг/мл — для линии 231,15 нм. [c.89]


Смотреть страницы где упоминается термин Горелка ацетиленовая: [c.25]    [c.64]    [c.97]    [c.440]    [c.107]    [c.437]    [c.13]    [c.554]    [c.2152]    [c.206]   
Лекционные опыты по общей химии (1950) -- [ c.268 ]

Химико-технические методы исследования Том 1 (0) -- [ c.120 ]

Справочник строителя промышленных печей Издание 2 (1952) -- [ c.402 ]




ПОИСК





Смотрите так же термины и статьи:

Горелка ацетиленовая инжекционная

Горелки

Реакторы ацетиленовые горелки

Реакторы ацетиленовые с кольцевой горелкой



© 2025 chem21.info Реклама на сайте