Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дейтерирование

Таблица 4.2. Распределение при алкилировании дейтерированного бензола олефинами в зависимости от природы катализатора, температуры и растворителя Таблица 4.2. Распределение при алкилировании <a href="/info/437993">дейтерированного бензола</a> олефинами в зависимости от <a href="/info/520796">природы катализатора</a>, температуры и растворителя

    Дейтерированный алкилбензол вступает в реакцию межмо-лекулярного обмена с бензолом, что и приводит к получению дейтеробензола. Экспериментально подтверждено, что концентрация дейтерия в ароматическом ядре алкилбензола, выделенного из реакционной смеси, значительно выше, чем в участвующем в реакции бензоле. [c.96]

Таблица 2.4. Эффективные коэффициенты диффузии дейтерированной воды в пастах И-и Иа-монтмориллонита при различных температурах Таблица 2.4. <a href="/info/30983">Эффективные коэффициенты диффузии</a> дейтерированной воды в пастах И-и Иа-монтмориллонита при различных температурах
    Первая из них — обычный процесс развития цепи, тогда как вторая включает процесс переноса цепи аллильным водородом. Если далее предположить, что получающийся (очень стойкий) аллильный радикал не способен начать другую цепь, но находится в системе до тех пор, пока не столкнется с другим радикалом, то подтверждаются наблюдаемые кинетические результаты. Прямого подтверждения механизма путем выделения из конечных продуктов реакции аллильных радикалов не получено, однако предположение, что обрыв процесса включает атаку на аллильный водород, подтверждается тем, что дейтерированный аллилацетат, СН2=СН—СО ОСОСНз, полимеризуется быстрее, чем аллилацетат, давая более высокомолекулярный полимер [16]. Такой изотопный эффект является хорошо разработанным методом доказательства, что разрыв отдельной связи является стадией, определяющей скорость химической реакции или продукты, образующиеся при этом. [c.131]

    Хотя эти процессы являются самыми простыми из возможных реакций, протекающих в присутствии концентрированных водных растворов гидроксидов щелочных металлов, механизм этих превращений долгое время был непонятен. Депротонирование может протекать на поверхности раздела фаз, в органической фазе под действием экстрагированного гидроксида аммония или же внутри инвертной мицеллы. В настоящее время известно, что этот процесс протекает в результате экстракции QOH. Поскольку при этом не образуется липофильного галоге-нид-аниона, то отравления катализатора не происходит. Протонирование или дейтерирование промежуточно образовавшегося карбаниона протекает под действием небольших количеств НгО или ВгО, которые экстрагируются вместе с анионом. [c.214]


    Дейтерирование. Введение дейтерия в ароматические соединения — очень простая реакция электрофильного замещения, для которой данные [c.459]

    Гидрогенизация бутадиена-1,2 на Pd дает одинаковое количество бутена-1 и цис-бут ена-2 с небольшим количеством бутина-2 [54], в то время как дейтерирование бутина-2 и цис- бутена-2 дает а-соединение,. а дейтерирование бутена-1 приводит к з-соединению. [c.89]

    Дейтерирование ароматических соединений является типичной реакцией электрофильного замещения, которая подчиняется, всем обычным правилам ориентации электрофильного замещения [64, 167, 179]. Уже отмечалось, что ароматические углеводороды, например бензол, подвергаются дейтерированию при помощи хлористого дейтерия только в присутствии таких катализаторов, как хлористый алюминий, и что, по всей вероятности, реакция идет через образование <г-комплекса [43]. Структура, предложенная для ст-комплекса, аналогична структуре промежуточного соединения в реакции Пфейфера-Визингера с, = Н . [c.408]

    Большой интерес вызвали результаты алкилирования бензола дейтерированными спиртами Сз—С5 в присутствии ВРз, полученные в работе [174, с. 4953]. На основании экспериментальных данных авторы сделали вывод, что первичные. и вторичные спирты при низких температурах превращаются в карбокатионы при повышении температуры карбокатионы превращаются в олефины (третичные спирты реагируют только как олефины), которые затем и взаимодействуют с ароматическими углеводородами, частично превращаясь при этом в полимеры. [c.97]

    Результаты, полученные В. В. Дугановой [175] при алкилировании дейтерированного бензола пропиловым и изопропиловым спиртами прн контакте с катализатором ВРз, показали отсутствие переноса дейтерия в алкильную группу полученного алкилбензола (табл. 4.6). При использовании в качестве катализатора ВРз-ОгО переход дейтерия в ароматическое ядро синтезированного изопропилбензола наблюдается лишь при повышении температуры до 80 °С, [c.97]

    Алкилирование бензола вторичными спиртами при 0°С протекает без промежуточного образования олефина при более высокой температуре олефины вступают в реакцию как промежуточные звенья. Кроме того, в процессе алкилирования бензола дейтерированными спиртами не образуется промежуточное про-тонированное циклопропановое соединение. [c.99]

    Отсутствие скелетной изомеризации при межмолекулярном переносе алкильных групп может быть объяснено на основании механизма, предложенного Мак-Коли-и Лином [201]. Этот механизм соответствует наблюдаемым величинам кинетического изотопного эффекта при использовании дейтерированных в а-положение алкилбензолов и ряду других данных, но не соответствует предсказываемым этим механизмом высоким значениям позиционной и субстратной селективности [219], а также различиям скоростей межмолекулярной миграции первичных, вторичных и третичных алкильных групп. Следовательно долевая значимость и этого пути в случае его существования должна быть незначительна. [c.226]

    При стационарной работе катализатора с использованием воздуха и этилена с небольшой концентрацией этана добавление в качестве ингибитора нескольких миллионных долей хлористого этила, не вызывает видимых изменений, даже если хлористый этил выходит из реактора в несколько ином виде, чем попадает в сырье. Это показывают опыты с дейтерированным хлористым этилом, когда происходят реакции [c.238]

    В экспериментах с подачей только дейтерированного хлористого этила половина выходящего хлористого этила содержала пять атомов водорода в молекуле, что доказывало образование хлористого этила из этана. [c.238]

    Можно, таким образом, заключить, что роль дейтерированной соляной кислоты в реакции этилирования описывается уравнениями (7) и (8). Е>С1 действует как агент, переносящий цепь, — он обрывает цепь и дает атом хлора, инициирующий новую цепь за счет отрыва водорода от циклогексана  [c.136]

    Адамс и Яннингс [79] проводили опыты с дейтерированным пропиленом, который они окисляли в акролеин па окиси меди (I) и кго-лнбдате висдгута. Механизм окисления пропилена одинаков для обоих катализаторов. Водород или дейтерий отщепляли от метильной группы н затем еще раз удаляли водород пли дейтерий от одного из концов. Тем не менее осталось неясно, по какому механизму происходит присоединение. [c.94]

    В пользу предложенного механизма говорит тот факт, что бромирование и иодирование протекают с одинаковой скоростью. Дейтерный обмен также идет со скоростью, сравнимой по абсолютной величине. Всестороннее исследование оптически активного бто/)-бутилфенилкетона [50] С2Н5 — —СН(СНз)СОСбН5 показало, что катализированное кислотой иодирование, бромирование и инверсия идут с одинаковыми скоростями. Было показано также, что катализированные основаниями 00 дейтерирование и инверсия идут с одинаковыми скоростями. Эти результаты можно рассматривать [c.491]

    Во многих случаях для облегчения анализа спектров может быть применен чрезвычайно полезный метод, основанный на зависимости частот колебаний от масс атомов. Замещение атомов их изотопами, в частности замещение атомов водорода в углеводородах атомами дейтерия, заметно изменяет инфракрасные спектры и спектры комбинационного рассеяния н позволяет получить ряд важных сведений. Поскольку силовые постояниые практически не зависят от изотопического состава, исследование спектров полностью дейтерированных углеводородов позволяет получить допо.инительиое число частот для вычисления силовых постоянных и поэтому применяется в ряде с-дучаев. Кроме того, частичное дейтерирование симметричных молекул уменьшает их симметрию, изменяет правила отбора и приводит к расщ(шлению вырожденных колебаний на невырожденные (т. е. к снятию вырождения с некоторых колебаний). Подобные изменения часто чрезвычайно важны для определения и отнесения основных частот исходных (недейтерированных) углеводородов. [c.301]


    Оф должна 6jiTb исключена из рассмотрения, так как были обнаружены кажущиеся совпадения между инфракрасным спектром и спектром ком-бннациошюго рассеяния бензола. Тщательное изучение этих случаев. привело к выводу, что они не приводят к противоречию с правилами отбора для точечной группы симметрии Изучение дейтерированных бензо- [c.304]

    Шеппард и Сэзерлэнд [41], применяя специальные методы, изучали к-парафины, содержащие больше шести атомов углерода. Полезными оказались исследования степени поляризации линий в инфракрасных спектрах твердых веществ. Были получены также спектры полностью дейтерированных к-парафинов. Это позволило разграничить частоты, относящиеся к атомам водорода, и частоты, относящиеся к колебаниям С—С связей. Браун, Шеппард и Симпсон [7] приводят расшифровку спектров м-парафинов в области от 1350 до 700 см- . Каждая СНа-гру1ша уча- [c.322]

    Исследование спектров ЯМР реакционной смеси, состоящей из полностью дейтерированного бис(я-кротил-07-никельиодида) и [c.115]

    Старкс [4] показал, что если перемещивать октанон-2 с 50%-ным раствором N300 в ВгО в присутствии 5% четвертичной аммониевой соли в течение 30 мин при комнатной температуре, то происходит полный Н/В-обмен атомов водорода и у С и у С . Без катализатора (аликват 336 ) за 3 ч обмен водорода на дейтерий проходит только на Ъ% [4]. Трехкратное повторение этой процедуры с 1-ацетилциклогексаном и 1-ацетилцикло-пентаном дает продукты, содержащие более 99% 04 [401]. Этот метод был использован также для дейтерирования более сложного соединения О, в котором дейтерий входил в положения, указанные на схеме 3.92 [402]. [c.215]

    Введение метки во всех трех положениях и окисление на катализаторах Bi—Мз—О приводят к тем же выводам [92]. В обоих случаях и СО и СО2 содержат концентрацию Зо% меченого вещества, что указывает на неселективный характер полного окисления. Сдвиг двойной связи не может объяснить эту симметрию, так как только небольшая часть непрореагировавшего пропилена есть СН2=СН—СНд [60]. Если работать с дейтерированными пропенами и принять разумное значение изотопного эффекта ко / н = 0,55 при 450° С), то приведенныз выше выводы подтверждаются [93] распределением дейтерия в акролеине. На обоих концах аллильной частицы должно происходить ступенчатое отщепление водорода  [c.162]

    Отметим два результата, не согласующихся с гидрокарбонильным механизмом. Мануэль [42] наблюдал г ис-гранс-изомериза-цию стильбена в присутствии Рез(СО)12, хотя молекула стильбена не содержит аллильного водорода, который мог бы участвовать в образовании гидрокарбонила. При изучении изомеризации аллил-бензола в растворе н-гексана под действием ВСо(СО)4 и НСо(СО)4 нашли [45], что образовавшийся пропенилбензол был дейтерирован лишь на 5 /о, а отношение скоростей изомеризации и дейтерообмена составляло ж 20. Поскольку скорости изомеризации в присутствии НСо(СО)4 и ОСо (СО) 4 были близки, полученные данные указывают на малую вероятность межмолекулярного перехода аллильного водорода от олефина к карбонилу. [c.109]

    Большинство данных по дейтерообмену указывает,, что в отсутствие газообразного водорода изомеризация протекает с внутримолекулярным 1—>-3-переходом атома Н. Ряд работ, подтверждающих этот выход, приведен на стр. ИЗ. Предположения о внутримолекулярном 3—)-2- и 2—-переходе атома Н при катализе л-комплексами высказаны лишь Дэвисом [52] на основе изучения изомеризации СНз—(СНг)4—СНО—СН = СН2 в растворе СНз— OOD. Это предположение было проверено [61] при изоме- ризации гексена-1, дейтерированного у О и С , и использовании ЯМР-спектров. Оказалось, что перемещения О внутри молекулы олефина в ходе изомеризации с комплексами Pd не происходит, а дейтерообмен с катализатором и растворителем не связан с изомеризацией. Таким образом, для гидридов и для я-комплексов в отсутствие водорода изомеризация протекает как внутримолекулярный процесс при координации молекул катализатора и олефина. [c.116]

    Изучена каталитическая активность кремнецинковых катализаторов [56]. Чистые окиси кремния и цинка не проявляют ни кислотных, ни основных свойств и каталитически не активны в изомеризации бутена-1. При исследовании смешанных цинксиликатных катализаторов различного состава, приготовленных соосаждением, оказалось, что максимальная кислотность отвечает составу ZnO Si02=3 7, а максимальная основность — составу ZnO Si02=7 3. ИК-Спектры адсорбированных на катализаторе оснований (пиридин, аммиак) показали, что кислотные центры являются льюисовскими. Именно они ответственны за изомеризацию бутена-1, так как адсорбция кислотного окисла (СОг), уменьшающая число основных центров, на каталитическую активность не влияла. Подтверждением этого является и то, что изомеризация протекала через внутримолекулярный перенос водорода это показали опыты со смесью недейтерированного и дейтерированного 1 с-бутена-2. [c.165]

    Эт закономерности, как показано выше, могут нарушаться, например, из-за торможения продуктами реакции, недостатка водорода, особенностей адсорбции вещества. Поэтому особенно интересно применение для гидрирования полициклических ароматических углеводородов гомогенных комплексных катализаторов, при использовании которых не имеют место осложняющие явления, связанные с адсорбцией и десорбцией на катализаторе. Эти катализаторы появились недавно, а применение их для гидрирования полициклических углеводородов описано пока только в одной работе Катализатор был приготовлен на основе родия и N-фeнилaнтpaнилoвoй кислоты. На примере антрацена опытами с дейтерированием и определением места дейтерия в прореагировавшей молекуле было показано, что в данном случае не происходит промежуточного образования 9,10-дигидро- [c.157]

    При алкилировании бензола бутеном-2 в указанных условиях экспериментов в присутствии растворителя нитрометана дейтерий успевает мигрировать во все положения алкильной группы. В соответствии с полученными результатами и с учетом того, что при использовании растворителя DзN02 дейтерирован-ные алкилбензолы не образуются, схему изучаемой реакции можно представить следующим образом  [c.93]

    Хочется еще раз подчеркнуть, что так называемые простые реакции гидрирования чрезвычайно сложны. Это доказывает класспческий эксперимент, много раз воспроизведенный и описанный в советской литературе в 1980 г. Над дейтерирован-ным никелевым катализатором пропускали недейтерированный этилен. После того как он адсорбировался на катализаторе, реагировал и десорбировался, в продуктах находили вое формы этана этан с шестью атомами обычного водорода и этан с шестью атомами дейтерия, а также все возможные промежуточные комбинации. Это говорит о том, что при адсорбции молекулы этилена на дейтерированном центре атомы водорода переходят от этилена к поверхности катализатора, а атомы дейтерия — в молекулу этилена. Следовательно, процесс адсорбции является намного более сложным, чем предполагалось до этих, ставших классическими, экспериментов. Их результаты приведены с единственной целью показать сложность реакции гидрирования, которую мы считаем очень простой. [c.117]

    В основном смазкоподобная жидкость и твердый парафин. Включает значительное количество бутил- и диэтилциклогексана. держит дейтерированный продукт. [c.134]

    Действие хлористого водорода как ингибитора полимеризации и агента, повышающего выход этилциклогексана, было подтверждено опытами с 38%-НОЙ дейтерированной соляной кислотой, растворенной в тяжелой воде (99% ВгО), в ачестве промотора моноэтилирования. Реакцию проводили в стандартных условиях. [c.135]

    Образование этилциклогексана, дейтерированного в цикле, позволяет предположить, что образующийся, например по уравнению (8), циклогексильный радикал подвергается промежуточному обмену с дейтериро ванным хлористым-водородом  [c.136]


Смотреть страницы где упоминается термин Дейтерирование: [c.67]    [c.76]    [c.562]    [c.115]    [c.83]    [c.113]    [c.125]    [c.165]    [c.67]    [c.145]    [c.291]    [c.73]    [c.128]    [c.135]   
Смотреть главы в:

Инфракрасные спектры поверхностных соединений -> Дейтерирование

Инфракрасные спектры и строение органических соединений -> Дейтерирование

Новые данные по ик-спектрии сложных молекул -> Дейтерирование

Новейшие методы исследования полимеров -> Дейтерирование

Основы органической химии Ч 2 -> Дейтерирование


Методы синтеза с использованием литийорганических соединений (1991) -- [ c.120 ]

Органическая химия (1979) -- [ c.136 , c.164 ]

Реагенты для органического синтеза Том 6 (1972) -- [ c.46 , c.67 , c.212 , c.290 , c.297 ]

Реагенты для органического синтеза Том 7 (1974) -- [ c.89 ]

Препаративная органическая химия Реакции и синтезы в практикуме и научно исследовательской (1999) -- [ c.2 , c.3 , c.4 ]

Методы синтеза с использованием литийорганических соединений (1988) -- [ c.120 ]

Химия Краткий словарь (2002) -- [ c.91 ]

Химические реакции полимеров том 2 (1967) -- [ c.0 ]

Хроматографические материалы (1978) -- [ c.4 , c.158 ]

Силивоны (1950) -- [ c.0 ]

Механизмы реакций в органической химии (1991) -- [ c.176 ]

Механизмы химических реакций (1979) -- [ c.70 ]

Теоретические основы органической химии (1973) -- [ c.0 ]

Изотопы в органической химии (1961) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте