Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Высокомолекулярные соединения и их значение

    Результаты аппроксимации приведены в таблице 1. Из теории растворов высокомолекулярных соединений известно, что а, = 1/М,, где а, -первый вириальный коэффициент, М, - молекулярная масса полимера. Оценка молекулярной массы полипропилена по а, дает значение 48609 у. е., что близко к значениям, определенным методом вискозиметрии. Коэффициент а = р, (0,5 - х) / М рД где Р, , Рз - плотности растворителя и полимера х - параметр Флори-Хаггинса - молекулярная масса растворителя. [c.112]


    Выше обсуждались вопросы, связанные с выяснением молекулярной структуры нефтяных асфальтенов вне зависимости от молекулярной структуры нефтяных смол. Между тем, в предыдущих главах мы неоднократно подчеркивали генетическую связь этих не-углеводородных высокомолекулярных соединений нефти. Рассмотрим теперь наличие общности и различия в строении молекул смол и асфальтенов, так же как мы сделали это в случае их элементного состава. Д. Эрдман в одной из своих работ [14] рассмотрению структурно-молекулярных вопросов смолисто-асфальтеновых веществ нефти предпослал характеристику их химического состава. Смолы и асфальтены, но мнению Эрдмана, представляют собою смеси высокомолекулярных неуглеводородных соединений нефти, в которых содержатся такие гетероэлементы, как кислород, азот и сера, а также небольшие количества ванадия и никеля. Используя большой комплекс физических методов для изучения углеродного скелета и соотношения в нем атомов углерода различной природы (ароматический, нафтеновый, парафиновый) в молекулах смол и асфальтенов, выделенных из сырых нефтей, природных асфальтенов и продуктов высокотемпературной переработки нефти, многие исследователи при решении принципиальных вопросов пришли к аналогичным выводам. В работах Эрдмана сделаны некоторые обобщения этих экспериментальных результатов. Важное научное значение имеет положение о том, что молекулы смол и асфальтенов состоят из нескольких плоских двухмерных пластин конденсированных ароматических и сферических нафтеновых структур, б.тиз-ких но своему строению. Принципиальное различие между смолами и асфальтенами, проявляющееся в различной их растворимости [c.98]

    Следующий этап развития химии твердого топлива связан с доминирующим значением угля, что требовало его всестороннего изучения, а также с бурным развитием химии высокомолекулярных соединений и петрографии угля. Широкое использование современных физико-химических и новых физических методов для исследования угля привело к новым успехам и к новому методологическому подходу при изучении химического состава и тонкой структуры твердого топлива. [c.6]

    Склонность высокомолекулярных компонентов нефти к ассоциативным явлениям, т. е. возникновению связей между ними, как отмечалось выще, обусловлена характером взаимодействия составляющих их структурных звеньев, которое связано с наличием дисперсионных, индукционных и ориентационных сил. Соотношение сил составляющих энергий в первую очередь зависит от полярности высокомолекулярных соединений нефти. В системе слабополярных молекул (алканы, циклоалканы, алкано-циклоалканы) основными являются силы дисперсионного взаимодействия. С увеличением полярности, что характерно для поли-аренов, большое значение приобретает ориентационное взаимодействие. Увеличение склонности к ассоциации смол, кроме отмеченного вьиие фактора ароматичности, также зависит от содержания в них полярных функциональных групп и от суммарного содержания в смолах гетероатомов (сера, азот, кислород, металлы). [c.25]


    Все большее значение приобретают синтетические высокомолекулярные соединения или, как их иначе называют, синтетические высокополимеры. Это разнообразные материалы, обычно получаемые из доступного и дешевого сырья на их основе получают пластические массы (пластмассы) — сложные композиции, в которые вводят [c.499]

    Рассмотрены основные направления химических превращений высокомолекулярных соединений нефтей и возможные пути пх химической переработки в продукты народнохозяйственного значения. Дана краткая характеристика важнейших современных методов разделения, исследования и анализа высокомолекулярных соединений нефти. [c.2]

    Величины энергии активации течения простых жидкостей выражаются в кДж/моль. Такая же единица измерения используется я для полимеров. В случае высокомолекулярных соединений значение Е надлежит относить к молю сегментов. Энергии активации течения некоторых полимеров по числовым значениям могут быть [c.136]

    Органические и неорганические высокомолекулярные соединения. Значение высокомолекулярных соединений для промышленности. Строение и классификация полимеров. Общие свойства полимеров (2 часа). [c.151]

    Несмотря на различие подходов, положенных в основу рассмотренных методов, сопоставление полученных резу.пьтатов свидетельствует о том, что вне зависимости от природы высокомолекулярных соединений значение их поверхностных энергий весьма близки друг к другу и составляют достаточно узкий интервал Эта закономерность объективна и, по-ви-димому, не случайна тем не менее ее причины, насколько нам известно, в литературе не обсуждались. [c.71]

    Натуральный и синтетические каучуки выделяются из высокомолекулярных соединений значениями температур перехода из стеклообразного состояния в высокоэластическое Тд и из высокоэластического в вязкотекучее Т . Для них прежде всего характерна большая разница между этими двумя температурами. Так, для натурального каучука Тд равно —73°, а Tf лежит на уровне [c.19]

    В 1867 г. Г. Дикон разработал получивший всемирную известность хлорный процесс—получение хлора окислением НС1 воздухом над медными соединениями. В 1867 г. А. Гофман получил впервые формальдегид окислением метилового спирта воздухом над платиной. В 1871 г. М. Г. Кучеров открыл замечательную реакцию гидратации ацетилена разбавленной серной кислотой в присутствии ртутных солей, которая лежит в основе многих каталитических превращений ацетилена, его гомологов и производных. В 1875 г. Кл. Винклер разрешил, наконец, проблему каталитического окисления SO, в SO3 воздухом в присутствии платинового катализатора, разработав промышленный способ контактного синтеза серной кислоты. Этот вопрос имеет многолетнюю интересную историю, начиная с работ И. Деберейнера и патента П. Филлипса в 1831 г., рекомендовавшего также платиновый катализатор, по потерпевшего неудачу из-за неумения проводить очистку сернистого газа от контактных ядов. В 1877 г. М. М. Зайцев опубликовал свои исследования по восстановлению различных органических соединений водородом в гетерогенной фазе над платиной или палладием, предвосхитив по существу методику гидрирования, разработанную гораздо позднее. В том же 1877 г. Н. А. Меншуткин начал свои классические исследования по приложению химической кинетики к органическим ссединениям в области изучения скоростей этерификации различных карбоновых кислот спиртами. В 1878 г. А. М. Бутлеров открыл реакцию уплотнения олефинов под действием серной кислоты, что явилось преддверием к синтезу высокомолекулярных соединений и процессов алкили-рования, имеющих сейчас огромное значение. Г. Г. Густавсон провел ряд исследований по каталитическому действию галогенидов алюминия на органические соединения, несколько опередив работы Ш. Фриделя и Дж. Крафтса. [c.15]

    Статьи для сборника были подобраны таким образом, чтобы дать по возможности более полное представлепие о химии и технологии высокомолекулярных соединений, значении их для прогресса социалистической науки и техники, о производстве и применении синтетических материалов и изделий из них в промышленности, сельском хозяйстве и в быту, об источниках получения полимеров п практически неограниченных сырьевых возможностях нашей страны для производства полимеров — о нефти, природных и попутных газах, каменном угле, древесине и других исходных веществах. [c.4]

    А.М. Бутлеров открытием формальдегида и изучением его главнейших свойств как бы впервые открыл дверь в область высокомолекулярных соединений, той категории химических веществ, которым суждено в современной химии и технике играть совершенно исключительную по значению роль . [c.380]

    Для расчета движущей силы процесса обратного осмоса, а в ряде случаев и ультрафильтрации (например, при большой концентрации высокомолекулярных соединений) необходимо знание осмотического давления раствора. Вместе с тем, в литературе отсутствуют обобщенные данные по расчету осмотического давления, а имеющиеся справочные значения осмотического давления или осмотических коэффициентов не систематизированы и не собраны воедино. Все это затрудняет проведение расчетов мембранных аппаратов и систем для осуществления процессов обратного осмоса и ультрафильтрации. [c.19]


    Кроме того, часто возникают и другие осложнения процесса разделения. Значения pH смещаются в сторону кислых или щелочных сред, что ускоряет гидролиз полимерных мембран. Возможно обезвоживание набухающих мембран, сопровождающееся необратимым изменением их структуры. В концентрированных растворах ряда органических веществ может происходить растворение мембран. В результате дополнительного воздействия концентрационной поляризации на мембране могут выпадать в осадок малорастворимые соли, а при ультрафильтрации высокомолекулярных соединений образуется гелеобразный слой, что нарушает нормальную работу аппаратов. [c.188]

    Полярограммы могут быть искажены за счет полярографических максимумов — резкого возрастания тока выше предельного значения его с последующим спадом. Причины возникновения максимумов различны, и могут быть связаны с неравномерной поляризацией ртутной капли и тангенциальным движением ее поверхности, что приводит к дополнительному перемешиванию раствора. Такого рода максимумы можно устранить введением в полярографируемый раствор ПАВ красителей (метиловый красный, фуксин и др.), высокомолекулярных соединений (агар-агар, желатин). ПАВ адсорбируются на поверхности ртутной капли, изменяют ее поверхностное натяжение, устраняя неравномерное движение приповерхностных слоев. Кроме того на полярограммах возникают кислородные максимумы растворенный в анализируемом растворе кислород восстанавливается на ртутном электроде в две стадии  [c.142]

    При ультрафильтрации высокомолекулярных соединений верхний предел концентрации определяется значениями, при которых может начаться образование гелеобразного осадка на поверхности мембраны, или же концентрацией, при которой проницаемость становится неприемлемо низкой (см. рис. У1-2) и (рис. 1У-20) из-за чрезмерного возрастания вязкости раствора. [c.191]

    Из краткой характеристики специфических свойств высокомолекулярных соединений нефти видно, что эта группа веществ по химическому составу и строению, а также по размерам и неоднородности молекул резко отличается от низкомолекулярных соединений нефти, состоящих преимущественно из углеводородов. Для исследования высокомолекулярных соединений нефти неприменима большая часть классических методов, успешно используемых при изучении углеводородного состава бензино-керосиновых частей нефти. При разделении и исследовании наиболее тяжелой части нефти во много раз возрастает значение физических и физико-химических методов, которые позволяют изучать природу и свойства ее, не вызывая существенных химических изменений в объектах исследования. Именно физические и физико-химические методы разделения и исследования сыграли решающую роль в развитии химии высокомолекулярных органических соединений, определив возможность быстрого ее расцвета и выделения в самостоятельную область химической науки. Такую же роль призваны сыграть современные [c.15]

    Соотношение (4.1) справедливо лишь для сильно разбавленных растворов высокомолекулярных соединений. При набухании сополимера или образовании гелей высокомолекулярных соединений диссипации энергии беспорядочного движения диффундирующих молекул вызывается продвижением последних в микроканалах сополимера, т. е. необходимо рассматривать значение макроскопического коэффициента трения /, [c.303]

    Совершенно иной характер носят технологические процессы химической модификации природных высокомолекулярных соединений, из которых наибольшее значение имеют производства эфиров целлюлозы. [c.4]

    Второе замечание относится к часто встречаемому в экспериментальной практике случаю применения смеси двух органических жидкостей в качестве растворителя. В более старой литературе такие системы рассматривали как бинарные системы, у которых свойства растворителя каким-ни-будь образом рассчитывали из свойств компонентов. Этот способ недопустим прежде всего тогда, когда (как это в большинстве случаев бывает) растворитель в сосуществующих фазах имеет различный состав. Особенно недопустимо определять критическую точку расслоения простым расчетом для бинарных систем. Скорее следует применять гораздо более сложные уравнения для тройных систем, которые в дальнейшем будут выведены. Это замечание также имеет значение прежде всего для растворов высокомолекулярных соединений. [c.226]

    До 70-х годов химические превращения САВ в основном имели подчиненное значение и служили дополнительной информацией при установлении структурных характеристик. В настоящее время можно говорить об их химических свойствах (см. схему 5). Появление промышленного и полупромышленного источника концентратов САВ — процессов бензиновой деасфальтизации позволило провести широкое исследование химических превращений высокомолекулярных соединений нефти, изучить свойства полученных продуктов и выявить их специфические особенности. [c.297]

    Развитие методов воздействия на природные залежи с целью увеличения нефте- и газоконденсатоотдачи привело к значительному расширению ассортимента веществ, закачиваемых в продуктивные пластдл. Многие из этих веществ (высокомолекулярные соединения, полимеры) не обладают свойствами ньютоновских жидкостей. Поэтому рассмотрение особенностей фильтрации неньютоновских систем приобретает Самостоятельное значение. [c.335]

    Наибольшее значение среди химических добавок имеют различного рода природные и синтетические высокомолекулярные соединения (полимеры), молекулы которых построены многократным повторением тех или иных определенных структурных единиц. Будучи по свойствам и строению весьма разнообразными, полимеры имеют и ряд общих свойств. [c.31]

    Химия высокомолекулярных соединений нефти находится еще в начальной стадии своего развития, но из года в год приобретает все большее значение, так как увеличить степень использования нефтей, особенно тяжелых высокосмолистых, можно лишь в результате вовлечения в переработку тяжелой, высокомолекулярной их части. [c.12]

    Если в результате флуктуации возникло сгущение молекул, происходит образование ассоциата, если же происходит разрежение, то появляются пузырьки паровой фазы. Ядро в последнем случае состоит из молекул низкомолекулярных соединений 11 окружено сольватной оболочкой из молекул высокомолекулярных соединений. Причем в ядре находятся молекулы, близкие по свойствам, а сольватные оболочки, окружающие ядра, содержат молекулы с другими свойствами. Главным отличием подобных систем является наличие поверхности раздела фаз, которая представляет собой переходный слой — реальный физический объект, обладающий объемом. Внутри слоя происходит непрерывное изменение свойств от значений близких к свойствам слоя на поверхности ядра до значений, характерных для дисперсионной среды. [c.75]

    Известно, что в результате ММВ могут формироваться два типа ССЕ, имеющих значение для процесса горения. В нефтяной системе на определенном этапе (при нагреве) образуется ССЕ с ядром из пизкомолекулярных соединений (пузырек), а на его искривленной поверхности в результате сил ММВ адсорбируются более высокомолекулярные соединения. Кроме того, образуется ССЕ с ядром из наиболее высокомолекулярных соединений (ассоциат), а иа его поверхности адсорбируются соединения с промежуточной молекулярной массой между соединениями ядра и дисперсионной среды. Например, в котельных топливах могут сформироваться ССЕ обоих типов, на поверхности которых параллельно будет идти процесс горения. Суммарный эффект процесса горения котельного топлива определяется кинетикой сгорания на поверхности ССЕ типа пузырька и ассоциата, а также кинетикой горения значительной [c.213]

    Помимо специфических коллоидно-химических явлений для буровых жидкостей важное значение имеют явления растворения и кристаллизации, диффузия, осмотические явления, процессы полимеризации в неорганических и, главным образом, органических высокомолекулярных соединениях. [c.6]

    Для оценки поведения высокомолекулярных соединений в промывочных жидкостях важное значение имеют два фактора. [c.33]

    Средневзвешенная молекулярная масса может быть вычислена из данных, полученных при исследовании гидродинамических свойств разбавленных растворов полимеров (вискозиметрия, диффузия, ультрацентрифугирование), а также их оптических свойств (светорассеяние). Для молекулярных масс, определенных гидродинамическими методами, характерна существенная зависимость полученных значений Му, от степени полидисперсности высокомолекулярного соединения и от применяемого растворителя. Отсюда возникает возможность оценки полидисперсности по результатам изучения гидродинамических свойств в различных растворителях. Применение гидродинамических способов определения Му, требует предварительной калибровки по молекулярным массам. Метод светорассеяния является абсолютным. [c.31]

    Для оценки скорости диффузии обычно пользуются коэффициентом молекулярной диффузии. В связи с тем, что молекулярная теория жидкостей разработана относительно слабо, то невозможно оценивать коэффициент диффузии в жидкостях с такой же точностью, как, например, для газов. Учитывая то, что остатки являются многокомпонентными смесями высокомолекулярных соединений, диффузионные явления в которых осложнены стерическими факторами и межмолекулярными взаимодействиями, обычно прибегают к различного рода упрощениям, в частности условно относят рассматриваемую смесь к двухкомпонентной. Например, дисперсную фазу относят к компоненту 1, а дисперсионную среду, в которой диффундирует дисперсная фаза, к компоненту 2. Для количественной оценки значений коэффициентов молекулярной диффузии в растворах могут быть использованы эмпирические корреляции, которые достаточно подробно рассмотрены Саттерфилдом [27]. Так, для оценки коэффициента диффузии В молекул соединений с относительно малыми размерами широко используется соотношение Вильке и Чанга  [c.29]

    Высокомолекулярные соединения (белки, полипептиды, поливиниловый спирт и другие), добавляемые для стабилизации дисперсных систем, называют з а щ и т н ы м н коллоида м и.. дсорби-руясь иа границе раздела фаз, онн образуют в поверхностном слое сетчатые и гелеобразиь1е структуры, создающие структурно-механический барьер, который препятствует объединению частиц дисперсной фазы. Структурно-механическая стабилизация Г меет решающее значение для стабтытзацин взвесей, паст, пен, концентрированных эмульсий. [c.313]

    Хлороформ и четыреххлористый углерод применяют главным образом в качестве растворителей. Хлороформ обладает анестезирующим свойством и используется в медицине. Из четыреххлористого углерода производят также хладагенты. Большое значение имеет разработанный в СССР процесс телемеризации этилена и четыреххлористого углерода, продуктами которого являются мономеры для производства высокомолекулярных соединений. [c.124]

    Введение. В наше время все большее значение приобре тают различного рода высокомолекулярные соединения. К ним принадлежат некоторые природные вещества — янтарь, целлюлоза, природный каучук, шерсть, шелк и др. — и большое число новых веществ, получаемых или путем модифицирования природных высокомолекулярных соединений (например, эфиры целлюлозы) или путем синтеза из обычных низкомолекулярных веществ. Последняя группа особенно многочисленна. В нее входят различные синтетические смолы — полиэтиленовые (от греческого слова поли — много), полистирольные, полихлорвиниловые, феноло-формальдегидные, аминосмолы и др. [c.559]

    В противоположность асфальтенам, масла содержат больше углеводородных, высокомолекулярных соединений и меньше гетероатомов (О, 5, Ы, V и др.). Структуры их характеризуются меньшей степенью цикличности. Истинная плотность кокса нз масел имеет наибольшее значение (2,16 г1см ). [c.196]

    Специфические качества высокомолекулярных соединений, которые не свойственны низкомолекулярным соединениям,возникают только тогда, когда число звеньев в цепной молекуле достигнет определенного для данного полимера значения. При дальнейшем увеличении числа звеньев изменяется только количественная ха-ралтеристнка этих специфических качеств высокомолекулярных соединений. Соединения, цепные молекулы которых содержат звеньев меньше, чем это необходимо для придания отличительных полимерных свойств, называются олигомерами от греческого слова олигос , что означает мало . [c.370]

    Громадное значение в народном хозяйстве имеют природные и синтетические высокомолекулярные органические соединения целлюлоза, химические волокна, пластмассы, каучуки, резина, лаки, клеи, искусственная кожа и мех, пленки и др., обладающие совокупностью замечательных свойств. Они могут быть эластичными или жесткими, твердыми или мягкими, прозрачными или непрозрачными для света и даже сочетать самые неожиданные свойства прочность стали при малой плотности, эластичность с тепло- и звукоизоляцией, химическую стойкость с твердостью и т. п. Подобная универсальность свойств наряду с легкой обрабатываемостью позволяет изготовлять детали и разнообразные конструкции любой формы, величины и окраски. Без синтетических материалов сейчас немыслим дальнейший технический прогресс в самолето-, машиио- и судостроении, радио- и электротехнике, реактивной и атомной промышленности и других областях науки и техники. Из пластмасс можно изготовлять корпуса судов, автомобилей, тракторов, части станков, изоляцию. Применение пластмасс в станкостроении позволяет по-новому решать ряд конструктивных задач. Высокомолекулярные соединения надежно защищают металл, дерево и бетон от коррозии. Использование новых синтетических материалов в дополнение к сельскохозяйственному сырью позволяет значительно увеличить производство тканей, одежды, обуви, меха и различных предметов домашнего и хозяйственного обихода. [c.185]

    Алифатические нитросоединения имеют важное практическое значение в качестве растворителей высокомолекулярных соединений, в частности эфиров целлюлозы и виниловых полимеров, и как промежуточные продукты при Синтезе ряда взрывчатых веществ, инсектицидов и фунгицидов, карбоновых кислот и гидроксиламина, метилметакрилата и т. д. Полинитропарафины используются в качестве окислителей в ракетном топливе и как добавки, снижающие температуру самовоспламенения дизельных топлив. Ряд нитроолефинов используются для производства высокомолекулярных соединений. [c.437]

    Характеризуя особенности высокомолекулярных соединений нефти, мы все время имели в виду нативные, т. е. химически неизменные соединения, находящиеся в сырой нефти, а не вещества, выделяемые из различных продуктов ее переработки. Это обстоятельство должно быть особо подчеркнуто, так как оно имеет принципиальное значение. Практика переработки нефти показала, что при термическом воздействии на нефть интенсивно идут процессы крекинга и уплотнения исходного материала [6—8]. Например, при пиролизе керосиновой фракции нефти (т. кип. 180—300° С) образуются значительные количества конденсированных систем ароматических углеводородов (нафталин, антрацен, фенантренидр.). Между тем в исходном керосине эти структуры отсутствуют, или встречаются в крайне незначительных количествах преимущественно гомологи нафталина. [c.14]

    В топливно-нефтехимических схемах помимо процессов каталитического риформинга, гидрокрекинга, каталитического крекинга и алкилирования изобутана должна еще предусматриваться гидроизомеризация легких бензинов. Продукты гидроизомеризацни необходимы для частичной з амены алкилатов. В этом случае непредельные углеводороды и изобутан могут быть использованы в процессах синтеза каучука и других высокомолекулярных соединениях. В схемах перспективных НПЗ, по-видимому, будет неуклонно повышаться попутная выработка олефинового и изопарафинового сырья, необходимого для синтезов различных продуктов широкого народного потребления. Вместе с тем в дальнейшем, очевидно, будет возрастать относительный выпуск реак тивных топлив и арктических изомеризованных моторных топлив, в производстве которых роль процессов гидрокрекинга и гидроизомеризации неуклонно увеличивается, Повышение удельного значения установок гидрокрекинга позволит одновременно вырабатывать изомеризованные низкозастывающие топлива и базовые масла. [c.348]

    Большинство углехимиков рассматривает органическую массу углей как сложную гетерогенную смесь различных высокомолекулярных соединений. Менделеев еще в 1870 г. первым обратил внимание на высокомолекулярное строение угля. Представление об угольном веществе как о высокомолекулярном соединении позволяет широко использовать методы быстро развивающейся химии высокомолекулярных соединений. По мнению одних авторов твердые топлива имеют высокомолекулярное, а по мнению других — мицеллярное строение. Этот вопрос имеет важное значение для понимания сущности и механизма изменений в угольном веществе как в условиях метаморфизма, так и при термохимической переработке. [c.211]

    Углубление процесса переработки нефти, или, что то же самое, повышение степени ее использования и повышение выходов ценных товарных нефтепродуктов — высококачественных моторных топлив и химических продуктов, стало в наше время одним из актуальнейших направлений совершенствования технологии переработки нефти. Основным резервом для эффективного решения этой задачи является тяжелая, или высокомолекулярная, часть нефти, составляющая при нынешней технологии переработки нефти 25—30% от поступившей в переработку сырой нефти и получившая название тяжелые нефтяные остатки . Если учесть, что больше половины этих остатков составляют так называемые неуглеводородные компоненты нефти, или смолисто-асфаль-теновые вещества, то станет ясно, какое большое научное значение и практическую актуальность приобретает проблема изучения состава, строения, свойств, химических реакций и основных направлений химической переработки и технического исиользова-Ш1Я нефтяных смол и асфальтенов. Вполне понятно поэтому, что эта область химии и технологии и геохимии нефти все больше и больше привлекает к себе внимание исследователей и инженеров. За носледние годы заметно расширилась география исследований в этой области и увеличилось число публикаций по составу, структуре и методам исследования смол и асфальтенов. Опубликованные материалы рассредоточены в многочисленных специальных периодических изданиях разных стран и поэтому труднодоступны. Обобщающие монографические работы по смолисто-асфальтено-вым веществам нефти отсутствуют. В монографии одного из авторов Высокомолекулярные соединения нефти , второе издание которой вышло в 1964 г. на русском и в 1965 г. — на английском языке, несколько специальных глав посвящены этому вопросу. [c.3]

    К высокомолекулярным соединениям нефти мы относим вещества молекулярного веса выше 400, независимо от того, имеют ли они чисто углеводородную природу или в состав их входят гетероатомы (кислород, сера, азот, металлы и т. д.). Вещества эти содержатся в тяжелой части нефти, имеющей температуру кипения выше 350° С [11. Самые большие молекулы веществ, входящих в состав нефтей, имеют молекулярный вес, в пределах от 3000 до 5000. Возможность наличия в нефтях более высокомолекулярных соедийений маловероятна. Наиболее высокомолекулярными соединениями нефти являются, ио-видимому, асфальтены Е литературе встречаются данные о тТШ —что асфальтены характеризуются молекулярными весами от 20 ООО до 200 ООО [2]. Однако эти высокие значения молекулярный вй С О асфальтенов, приводимые в работах отдельных исследователей, объясняются тем, что они не учитывают явления ассоциации молекул асфальтенов, которое наблюдается даже в разбавленных растворах при температурах ниже. 60—70° С. [c.12]

    В работе [172] исследованы структурно-механические свойст-ра остатков арланской, ромашкинской, тюменской и мангышлакской нефтей, различающихся степенью дисперсности сложных структурных единиц. Результаты исследований структурно-механической прочности остатков различной глубины отбора дистиллятов представлены на рис. 41. Все исследуемые остатки имеют критические точки перехода от одного состояния структурированности в другое, соответствующие пересечению касательных, проведенных к кривой зависимости предельного напряжения сдвига от температуры. Анализ кривых на рис. 41 позволяет проследить достаточно четкое совпадение температуры застывания исследуемых остатков с точкой перегиба tl. При температуре il и ниже дисперсная фаза исследуемых остатков образует сплошной каркас (студни), внутри которого в иммобилизованном виде содержится дисперсионная среда. Другая кинетическая точка 2 соответствует переходу ССЕ от малой степени дисперсности к высокой, что в конечном счете приводит к исчезновению ССЕ. В результате этого в точке з НДС переходит в неструктурированное состояние, характеризующееся ньютоновским течением (с=1). На абсолютные значения /ь t2 и и их разности (/2— 1) и ( 3— 2) существенное влияние оказывает концентрация и качество низко- и высокомолекулярных соединений в нефтяных остатках. [c.138]

    Пользуясь этим методом, Г. И. Фукс определил толщину граничного слоя для масел с молекулярной массой 300 в пределах 0,2—0,5 мкм. С повыщением молекулярной массы жидкости толщина граничного слоя возрастает и для классических высокомолекулярных соединений может достигать значений, превышающих в 20—50 раз названное для масел значение. При этом и.шеияется не только толщина, но и прочностные свойства граничного слоя. Г. И. Фукс показал, что для относительно низкомолекулярных масел вязкость граничного слоя примерно в 10— 15 раз выше вязкости жидкости в объеме. По-виднмому, с увеличением разницы в молекулярных массах смешиваемых высоко- и низкомолекулярных соединений и различие в поверхностных и объемных свойствах будет увеличиваться. [c.140]

    Смолисто-асфальтеновые вещества (САВ) представляют со бой неуглеводородные высокомолекулярные соединения нефти, которые содержат до 88 % углерода, до 10 7о водорода и до 14 % гетероатомов [223, 224]. В САВ в количестве 1—2% сконцентрированы полностью все металлы, присутствующие в нефтях [225, 226]. Невзирая на значительное разнообразие м,есторождений нефти, условий их залегания при соблюдении одинакового метода их выделения содержание углерода и водорода в асфальтенах колеблются в узких пределах 82 3 и 8,1 0,7% 225]. Этим значениям соответствует отношение Н С = 1,15 0,05 (табл. 92а). Постоянство атомного отнощения Н С — факт сам по себе удивительный, если учесть возможность большого числа перестановок фрагментов в молекулах, включающих гетероатомы. Это является наиболее веским доказательством того, что асфальтены имеют определенный состав и осаждаются в соответствии с ним, а не в зависимости от растворимости. [c.263]

    Изоэлектрическая точка золя может быть изменена в результате адсорбции на иоверхности частиц полиамфолитов (ПАВ или высокомолекулярных соединений). Поскольку при значениях рИ среды, близких к изоэлектрической точке, золи, как правило, становятся неустойчивыми, адсорбционное модифицирование поверхиости частиц часю применяют для защиты их от коагуляции. Нри такой стабилизации поверхность частиц приобретает свойства адсорбата. При этом заряд частиц и изоэлектрическая точка зависят не только от природы стабилизатора, но и концентрации электролитов. [c.100]

    Величины содержания углерода и водорода не имеют большого значения в химии нефти, так как даже присутствие высокомолекулярных соединений вызывает не слишком большую разницу в анализах нефтей различного типа. Однако полный элементарный анализ позволяет судить о содержании в нефти серы, кислорода и азота (в сумме), т. е. определяет содержание гетерогенных соединений. На одну весовую единицу кислорода, азота и серы в среднем приходится около 15—20 вес. единиц углеводородных радикалов, с которыми связаны эти гетерогеппые элементы. Так как ошибки элементарного анализа вследствие неполного сгорания приводят к преувеличенному содержанию гетерогенных элементов, всегда следует предпочитать прямое определение этих элементов, и старые анализы некоторых нефтей не всегда заслуживают доверия. [c.21]


Смотреть страницы где упоминается термин Высокомолекулярные соединения и их значение: [c.282]    [c.33]    [c.348]   
Смотреть главы в:

Основы химии высокомолекулярных соединений -> Высокомолекулярные соединения и их значение




ПОИСК





Смотрите так же термины и статьи:

Высокомолекулярные соединени

Высокомолекулярные соединения



© 2025 chem21.info Реклама на сайте