Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Германий модификации

    Ближайшие соседи углерода по группе периодической системы— кремний, германий и олово (в модификации серого олова) кристаллизуются в решетке алмаза. Однако- при нарастании металличности соответственно изменяется характер связи. [c.132]

    Это сходство с металлами указывает, что валентные электроны в германии не связаны с атомами столь прочно, как можно было бы ожидать для настоящего ковалентного каркасного кристалла. Мыщьяк, сурьма и селен существуют в одних модификациях в виде молекулярных кристаллов, а в других модификациях - в виде металлических кристаллов, хотя атомы в их металлических структурах имеют относительно низкие координационные числа. Известно, что теллур кристаллизуется в металлическую структуру, но довольно вероятно, что он может также существовать в виде молекулярного кристалла. Положение астата в периодической таблице заставляет предположить наличие у него промежуточных свойств, однако этот элемент еще не исследован подробно. [c.607]


    В ряду Ое — 8п — РЬ отчетливо усиливаются металлические свойства простых веществ. Германий серебристо-белого цЕ ета, по внешнему виду похож на металл, но имеет алмазоподобную решетку. Олово полиморфно, существующая в обычных условиях р-модифи-кация ( белое олово) устойчива выше 13,2°С это — серебристо-белый металл тетрагональной структуры с октаэдрической координацией атомов. При охлаждении белое олово переходит в а-модификацию ( серое олово) со структурой типа алмаза (пл. 5,85 г см ). Переход Р- в а-модификацию сопровождается увеличением удельного объема (на 25,6%), в связи с чем олово рассыпается в порошок. Свинец — темно-серый металл с типичной для металлов структурой гранецентри-рованного куба. [c.483]

    К атомным простейшим кристаллическим решеткам, в узлах которых размещаются атомы, ковалентно связанные между собой, относятся алмаз, графит, кремний, германий, а-олово (серая модификация) и др. Взаимная ориентация атомов у них опреде- [c.135]

    Структура элементных полупроводников подчиняется так называемому правилу октета , согласно которому каждый атом имеет (8 — №) ближайших соседей, где № — номер группы периодической системы, в которой находится данный химический элемент. Например, координационные числа в полупроводниковых модификациях углерода, кремния, германия, олова равны четырем (8—IV), в кристаллах фосфора, мышьяка, сурьмы — трем (8—V), а в полупроводниковых сере, селене, теллуре — двум (8—VI). [c.341]

    При значительном повышении давления и нагревании можно получить несколько модификаций германия со все увеличивающейся плотностью и электрической проводимостью. [c.282]

    Модификации. Как и углерод, кремний и германий существуют в виде нескольких модификаций. Алмазоподобные (кубические) модификации этих элементов являются твердыми блестящими достаточно тугоплавкими веществами серо-стального цвета (у кремния) и от серебристого до [c.377]

    Германий, как и кремний, полупроводник, имеет алмазоподобную решетку, по внешнему виду типичный металл серебристо-белого цвета. Олово имеет модификации белая р-модификация (устойчива выше 286,2 К) — серебристо-белый металл серая а-модификация ( серое олово ) имеет алмазоподобную решетку. Свинец — темно-серый металл. Наиболее характерные производные элементов IVA группы приведены ниже  [c.454]

    Олово существует в двух полиморфных модификациях, причем низкотемпературная (a-Sn — серое олово) обладает кристаллической решеткой типа алмаза и полупроводниковыми свойствами, а высокотемпературная ( -Sn — белое олово), хотя и представляет собой металл по физическим свойствам, тем не менее кристаллизуется в малохарактерной для металлов тетрагональной структуре. С химической точки зрения олово ближе примыкает к германию, чем к свинцу, но металлический характер этого элемента выражен более ярко, чем у германия. Единственным типичным металлом в этой подгруппе является свинец. В виде простого вещества он кристаллизуется в плотноупакованной ГЦК структуре с координационным числом 12. В своих соединениях он выступает в основном в качестве катионообразователя. [c.215]


    Третий представитель этой подгруппы — свинец — в компактном состоянии представляет собой серебристо-серый металл с синеватым отливом. Свинец в отличие от Ge и Sn не имеет полиморфных модификаций и всегда кристаллизуется в плотноупакованной ГЦК структуре. Таким образом, сравнивая кристаллические структуры в ряду Ge—Sn—Pb, можно отметить, что общая тенденция к металлизации, отмеченная у элементов, прослеживается и в кристаллических структурах их гомоатомных соединений — от рыхлых алмазоподобных структур (Ge и a-Sn) к плотноупакованным ( -Sn и РЬ). В этом ряду олово все же ближе к германию, чем к своему [c.217]

    Сравнивая серу и ее гомологи с хлором, бромом и иодом, наблюдается по ходу сверху вниз в столбце в обоих группах повышение тенденции к полимеризации и образованию сложно построенных кристаллических структур это явление еще заметнее при переходе к V группе, т. е. к фосфору и его гомологам и далее оно видно очень ярко в IV группе для кремния, германия, олова и свинца. При движении сверху вниз в этих столбцах Системы возрастает металлический характер кристаллических модификаций. [c.205]

    Кристаллические решетки, в узлах которых находятся отдельные атомы, называются атомными. Атомы в таких решетках соединены между собой прочными ковалентными связями. Примером может служить алмаз — одна из модификаций углерода. Алмаз состоит из атомов углерода, каждый из которых связан с четырьмя соседними атомами. Координационное число углерода в алмазе 4. Структура алмаза показана на рис. 11.1. В решетке алмаза, как и в решетке хлорида натрия, молекулы отсутствуют. Весь кристалл следует рассматривать как гигантскую молекулу. В неорганической химии известно большое число веществ с атомной кристаллической решеткой. Они имеют высокие температуры плавления (у алмаза свыше 3500°С), прочны и тверды, практически нерастворимы в жидкостях. Атомная кристаллическая решетка характерна для твердого бора, кремния, германия и соединений некоторых элементов с углеродом и кремнием. [c.79]

    Соединения с кислородом. Окислы. Известны два окисла германия — двуокись ОеОз и окись ОеО. Теплоты их образования соответственно 132,6 и 61 ккал/моль. Двуокись существует в нескольких полиморфных модификациях (табл. 47). При гидролизе галогенидов [c.156]

    Как с гексагональной, так и с тетрагональной модификацией двуокиси германий обладает ограниченной взаимной растворимостью в жидком состоянии. [c.158]

    Образование определенных гидратов ОеО до сих пор не установлено. Из водных растворов солей германия (II) гидроокись осаждается, например, аммиаком при pH 8—9 [13]. В зависимости от условий осаждения она представляет собой белый или оранжевый, иногда темно-коричневый осадок. Белая модификация более реакционноспособна. При продолжительном перемешивании с водой или при прибавлении щелочи переходит в красную модификацию. Влажная окись германия чрезвычайно легко окисляется на воздухе. Ее можно обезводить, нагревая в инертной атмосфере получается желто-коричневая аморфная окись. [c.158]

    В периодической системе нет резкой границы между элементами с металлической структурой и элементами с ковалентной каркасной структурой (рис. 14-8). Это видно из того, что кристаллы некоторых элементов обладают свойствами, промежуточными между проводниками и изоляторами. Кремний, германий и а-модификация олова (серое олово) обладают кристаллической структурой алмаза. Однако межзонная щель между заполненной и свободной зонами в этих кристаллах намного меньше, чем для углерода. Так, ширина щели для кремния составляет всего 105 кДж моль (Как мы уже знаем, для углерода она равна 502 кДж моль .) Для германия ширина межзонной щели еще меньше, 59кДж моль а для серого олова она лишь 7,5 кДж моль Ч Металлоиды кремний и германий называются полупроводниками. [c.631]

    М. X. Карапетьянц показал хорошую применимость этого ме тода сопоставленпя к большому числу веществ в кристаллическом состоянии, включая многие простые вещесра, окислы, сульфиды, галогениды и др. Рис. V, 5 иллюстрирует наблюдаемые соотно шения при сопоставлении температур, отвечающих одинаковым значениям теплоемкостей (Ср) алмаза, кремния, германия и олова (в а-модификации). Здесь в качестве эталонного вещества принят кремний. Для каждого из этих веществ зависимость имеет линейный характер, причем все прямые пересекаются практически в одной точке. Это объясняется тем, что все рассматриваемые вещества обладают кубической решеткой алмаза. Для свинца же, обладающего кубической гранецентрированной решеткой, такая [c.205]

    В ряду Ое—8п—РЬ отчетливо усиливаются металлические свойства простых веществ. Германий—серое металлоподобное вещество. Хотя германий внещне похож на металл, он имеет алмазоподобную структуру. Олово в обычных условиях существует в виде (3-модификации (белое олово). Это серебристо-белый металл, имеющий кристаллическую решетку с искаженно октаэдрической координацией атомов. При охлаждении ниже температуры 13,2 °С белое олово переходит в а-модификацию (серое олово) с алмазоподобной структурой. Этот переход сопровождается увеличением удельного объема (на 25,6%), в связи с чем олово рассыпается в порошок. Свинец — темно-серый металл с типичной для металлов структурой гранецентрированного куба (к.ч. = ]2). [c.188]


    Если учесть, что разница между полупроводниками и диэлектриками только количественная, то можно сказать, что наличие только металлической связи между атомами исключает полупроводниковые свойства вещества (из этого не надо делать вывода о том,что в обычных условиях металлическая составляющая связи в полупроводниках полностью отсутствует). Для полупроводников типичны ковалентные и ионно-ковалентные связи. Музер и Пирсон отмечают, что в составе всех известных неорганических полупроводников всегда есть неметаллические атомы какого-либо из элементов IVA — VIIА подгрупп. Зонная теория не объясняет этого факта. Собственно полупроводниками являются элементарные вещества этих групп (углерод, кремний, германий, а-олово, некоторые модификации 4юсфора, мышьяка, сурьмы, селен, теллур). Сюда надо отнести и бор. Некоторые черты полупроводниковых свойств имеют сера и иод. Слева и снизу от этих элементов в системе находятся металлы, а выше и правее — типичные диэлектрики. [c.255]

    Инженерами В.П. Соседовым, Л.П.Овсянниковой и A. . Кармановым в 1957-1960 гг. создан процесс получения особо чистого графита классов В-3 и В-4. Здесь уже требовалась чистота значительно более высокая, чем для реакторного графита. Если в последнем общее содержание зольных примесей допускалось до 20 тысячных долей процента, то в особо чистом графите эта величина не должна была превышать одной тысячной процента, а содержание отдельных примесных элементов — не более М0 %. Такой фафит потребовался для получения сверхчистых германия и кремния в технологии создания полупроводниковых элементов в качестве контейнерного материала. Его производство было также организовано на МЭЗе, что потребовало модификации некоторых печей графитации, использования при газотермическом рафинировании кроме хлора также фторсодержащих соединений, получения в печи температуры не ниже 3000°С и проведения процесса в чистых углеродных материалах за время, не превышающее 10—12 ч. [c.44]

    Изучение состава и строения поверхностных пленок на разных стадиях их формирования проводят на основе анализа экспериментальных спектров МНПВО и табличных значений абсорбционных максимумов, характерных для различных модификаций оксидов германия (моноокиси и двуокиси, аморфной, стеклообразной, гексагональной пли тетрагональной), германа-тов, гидридных (GeH), гидроксильных (GeOH) и других функциональных групп, а также молекул физически адсорбированной воды. Кроме того, на всех этапах исследования структурных особенностей поверхностных пленок желательно проводить эллипсометрнческий контроль за толщиной и показателем преломления пленки (см. главу 9). [c.145]

    По химическому составу полупроводники весьма разнообразны. К ним относятся элементарные вещества, как, например, бор, графит, кремний, германий, мышьяк, сурьма, селен, а также многие оксиды ( uaO, ZnO), сульфиды (PbS), соединения с индием (InSb) и т. д. и многие соединения, состоящие более чем из двух элементов. Известны и некоторые органические соединения обладающие полупроводниковыми свойствами. Таким образом, к полупроводникам относится очень большое число веществ. Обусловлены полупроводниковые свойства характером химической связи (ковалентным, или ковалентным с некоторой долей ионности), типом кристаллической решетки, размерами атомов, расстоянием между ними, их взаиморасположением. Если химические связи вещества носят преимущественно металлический характер, то его полупроводниковые свойства исключаются. Зависимость полупроводниковых свойств от типа решетки и от характера связи ясно видна на примере аллотропных модификаций углерода. Так, алмаз — типичный диэлектрик, а графит — полупроводник с положительным температурным коэффициентом электропроводности. То же у олова белое олово — металл, а его аллотропное видоизменение серое олово — полупроводник. Известны примеры с модификациями фосфора и серы. [c.298]

    Количество химически связанной воды в гидратах может быть весьма различным и приведенные формулы соответствуют простейшим из возможных соединений. Следует имегь в виду, что процесс гидратации совершенно безводных окислов протекает весьма медленно. У кварца, т. е. кристаллической модификации двуокиси кремния, этот процесс настолько длителен, что им вообще можно пренебречь. Гидраты окислов кремния и германия представляют собой типичные амфотерные соединения, которые незначительно, диссоциируют как по кислотному, так и по основному типу, по кислотному типу  [c.93]

    На рисунке приведена зависимость изменений стандартных энергий Гиббса при образовании гексагональной и тетрагональной модификаций оксида германия СеОз от температуры. Найдите область условий, при которой окисление германия по реакции Ge + 2Н2О = [c.25]

    Модификации. Как и углерод, кремний и германий существуют в виде нескольких модификаций. Алмазоподобные (кубичег ские) модификации этих элементов являются твердыми блестящими достаточно тугоплавкими веществами серо-стального цвета (у-кремния) и от серебристого до черного цвета в зависимости от обработки поверхности (у германия). Это хрупкие вещества (особенно германий), которые легко различить по плотности у германия (5,33 г/см ) в два с лишним раза выше, чем у кремния (2,33 г/см ). [c.282]

    Германий, олово и свинец—белые блестящие (за исключением серой модификации альфа-олова), мягкие и низкоилавкие (кроме германия) металлы, играют весьма большую роль в современной технике. Они получаются восстаповлеиием при нагревании их оксидов, галидов или электролизом. Для использования в полупроводниковой технике германий подвергается дополнительной очистке— зонной плавке (с. 168). [c.187]

    Углерод Б отличие от германия и кремния может находиться в трех структурных модификациях —алмаза, графита и карбина. Алмаз обладает объемной трехмерной кристаллической решеткой, в которой каждый атом углерода ковалентно связан с четырьмя другими атомами углерода, расположенными вокруг него по вершинам правильного тетраэдра. Эти связи возникают за счет гибридных 25р -орбита-лей атома углерода и направлены под углом 109°28. Межатомные расстояния С—С в алмазе равны 1,54 А. [c.306]

    Вещество будет обладать полупроводниковыми свойствами, если в данном состоянии обеспечиваются условия образования насыщенных парноэлектронных связей хотя бы у одного из компонентов (у анионообразователя). В элементарных полупроводниках ковалентная связь образуется заполнением 5- и /з-орбиталей всех атомов. Эти полупроводники подчиняются так называемому правилу октета 8—М, согласно которому атом в ковалентном кристалле имеет 8—N ближайших соседей (уУ — номер группы Периодической системы). Так, кремний, германий и а-олово имеют координационное число 4 (Л = 4), для полупроводниковых модификаций фосфора, [c.318]

    Германий обладает полупроводниковыми свойствами. Электросопротивление и подвижность носителей тока приведены для чистого мо-нокристаллического германия, обладающего только собственной проводимостью. Кристаллизуется он в кубической решетке типа алмаза. Очень хрупок, при комнатной температуре легко превращается в порошок. Твердость по шкале Мооса 6—6,5. Методом микротвердости было найдено значение 385 кг/мм . Такая высокая твердость в сочетании с хрупкостью делает невозможной механическую обработку германия. С повышением температуры его твердость падает выше 650 чистый германий становится пластичным. При высоком давлении получены еще три модификации германия, отличающиеся большей плотностью и электропроводностью. При плавлении он, подобно галлию и висмуту, уменьшается в объеме (- 5,6%). В парах масс-спектрографически обнаружены, помимо отдельных атомов, агрегаты, содержащие до восьми атомов. [c.155]

    При быстром охлаждении расплава двуокись германия, подобно кремнезему, образует стекло. В отличие от кварцевого оно легко рас-стекловывается. Модификация двуокиси, подобная халцедону, была получена гидротермальным способом [6]. Кроме вышеуказанных, описаны еще две модификации двуокиси с кубической решеткой типа [c.157]

    Соединения с хлором. Тетрахлорид Ge U — основной полупродукт при получении и очистке германия. Образуется действием I2 на Ge или растворением GeOg в соляной кислоте. Может быть отогнан из солянокислых растворов. Чистый тетрахлорид — подвижная, сильно преломляющая свет, дымящаяся на воздухе жидкость. При сильном охлаждении застывает в прозрачные кристаллы. Кроме стабильной а-модификации (т. пл. —49,5°), есть -модификация (т. пл. —51,5°). При застывании особо чистого тетрахлорида обычно кристаллизуется -модификация, очень медленно переходящая в а-форму. [c.165]

    Выщелачивание водой. Сравнительно высокая растворимость ОеОа (точнее — гексагональной модификации) в воде (см. рис. 41) позволяет в некоторых случаях извлекать германий выщелачиванием водой при нагревании. Водным выщелачиванием можно извлечь свыше 50% Ое из летучей золы [75]. На свинцово-цинковом заводе в Балене Бельгия] водная обработка применяется для извлечения германия из свинцовых кеков после выщелачивания фьюминг-возгонов. [c.180]


Смотреть страницы где упоминается термин Германий модификации: [c.147]    [c.69]    [c.226]    [c.313]    [c.187]    [c.344]    [c.634]    [c.184]    [c.218]    [c.156]    [c.162]    [c.163]   
Курс неорганической химии (1963) -- [ c.567 ]

Курс неорганической химии (1972) -- [ c.508 ]




ПОИСК







© 2024 chem21.info Реклама на сайте