Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

К определению натрия атомно-абсорбционным методом

    Чаще всего определение натрия проводят из растворов, используя пламенный способ атомизации в атомно-абсорбционном методе и низкотемпературные пламена в качестве источников возбуждения в атомно-эмиссионном методе анализа. [c.156]

    При определении низких концентраций оксидов магния, кальция, алюминия, калия и натрия наиболее оптимальным является атомно-абсорбционный метод. Выбор пламени зависит от состава проб. [c.164]


    При определении натрия в пламенах предпочтительно использовать метод атомно-эмиссионной спектрометрии. Поскольку современные спектрофотометры позволяют регистрировать абсорбционный и эмиссионный сигналы, при определении большого числа элементов в сложных объектах атомно-абсорбционным методом натрий (калий) определяют в режиме эмиссии. На сигналы эмиссии и абсорбции значительно влияют физико-химические процессы в пламенах, определяющие механизм и степень атомизации вещества, поэтому в этом разделе рассматриваются помехи, общие для обоих методов [397]. Особенности каждого метода оговорены или вынесены в специальный раздел. [c.113]

    При определении натрия атомно-абсорбционным методом изучено влияние условий измерения и различных параметров на величину абсорбции и наклон градуировочных графиков [935]. Применяли спектрофотометр фирмы Перкин-Элмер (модель 303), пламена ацетилен—воздух и ацетилен—оксид азота(1). Предложена новая модель многоэлементного пламенного спектрометра с детектором-види-коном, оснащенным ЭВМ, Предусмотрены программы, позволяющие исключить наложения спектров мешающих элементов, корректировать фон, проводить коррекцию с помощью внутреннего стандарта, измерять аналитический сигнал по отношению к усредненному фону. Прибор используют для одновременного определения натрия, калия, лития и кальция [755]. [c.116]

    К определению натрия атомно-абсорбционным методом [75] [c.106]

    Для определения магния и кальция в золах растений и почвах авторами работы [22] на базе монохроматора F-4 сконструирован двухлучевой спектрофотометр второй пучок проходит под пламенем через горизонтальную трубку, входящую в конструкцию удлиненной горелки прибор дает возможность измерить поглощение 0,3% чувствительность обнаружения магния и кальция сравнительно невысока — 0,005 и 0,8 мкг/мл соответственно. Исследование влияния различных катионов на атомно-абсорбционное определение натрия (интервал концентраций 1 — 100 мкг/мл) проведено в [23] установлено, что калий, магний, марганец и алюминий не мешают определению, но кальций и железо мешают отмечают также влияние со стороны марганца и алюминия при их совместном присутствии. Определение Na при избытке Са описано в [84]. Опубликованы атомно-абсорбционные методы определения Сг и Си в железе и сталях [24, 83] Fe в карбиде вольфра-228 [c.228]

    Пламенно-фотометрические способы определения щелочных элементов хорошо разработаны и дают высокую чувствительность определений. Атомно-абсорбционный метод анализа для лития, натрия и калия уступает по чувствительности эмиссионному методу. Однако его широкое использование для определения щелочных металлов вполне оправдано, поскольку эмиссионный пламенно-фотометрический анализ осложнен различными оптическими и физически.ми помехами. Такого рода помех в атомно-абсорбционном методе значительно меньше. [c.105]


    Качество воды. Определение натрия и калия. Часть 1. Определение натрия атомно-абсорбционным спектрометрическим методом [c.484]

    Атомно-абсорбционный метод анализа рекомендуют применять при определении относительно больших количеств натрия [67]. Предел обнаружения натрия не снижается при применении двухлучевого атомно-абсорбционного спектрофотометра. [c.114]

    Атомно-абсорбционный метод определения менее 0,005% натрия [c.91]

    АТОМНО-АБСОРБЦИОННЫЙ МЕТОД ОПРЕДЕЛЕНИЯ НАТРИЯ В ХИМИЧЕСКИХ РЕАКТИВАХ [c.137]

    В теории атомно-абсорбционного метода анализа некоторые теоретические модели рассматриваются на примере элементов с высокой степенью атомизации в пламенах, в частности натрия [845, 1080]. Так, в работе [1080] дается обоснование атомно-абсорбционного метода определения концентрации вещества в пламени без применения стандартных растворов. При расчете концентрации свободных атомов в пламени рассматривают количество вещества, попадающее в пламя в виде аэрозоля, распределение атомов в рабочей зоне, скорость прохождения газов через поглощающий слой. Вычисленные значения величины поглощения света для натрия (меди и серебра) сравнены с экспериментальными. Экспериментальные данные исполь- [c.126]

    Атомно-абсорбционный метод определения 0,05—0,02% натрия [c.93]

    Описан атомно-абсорбционный метод определения натрия с пределом обнаружения 3 10 г по линии 589,0 нм с непламенной атомизацией вещества [704]. Анализируемое вещество помещают в цилиндрическую кварцевую камеру, которую устанавливают в лодочку из графита, танталовой или вольфрамовой фольги. Лодочку нагре- [c.132]

    Предложен атомно-абсорбционный метод определения натрия в пентаоксиде ванадия [77, 78]. [c.169]

    Предложен атомно-абсорбционный метод определения Сё, Со, Си, N1, КЬ после сорбционного концентрирования их на полимерном тиоэфире в присутствии диэтилдитиокарбамината натрия. Метод применим к любым по составу природным и сточным водам. [c.191]

    Разработан экстракционно-атомно-абсорбционный метод определения мышьяка в бензиновых фракциях нефти — сырье для каталитического риформинга. Метод основан на обработке пробы иодом для перевода мышьяка в растворимую в воде форму, экстракции водой и после соответствующей обработки экстракта непламенном атомно-абсорбционном анализе [163]. А для определения иода в смазочных маслах пробу обрабатывают раствором щелочи, образовавшиеся йодид и иодат натрия экстрагируют и экстракт анализируют методом эмиссионной спектроскопии. В работе [164] использовано экстракционное выделение железа—продуктов износа из работавших масел для последующего анализа экстракта методом вращающегося электрода. Разработаны экстракционно-спектральные методы определения свинца в бензинах. Пр и подготовке пробы к анализу либо концентрируют содержащийся в ней свинец, либо переводят алкил-свинцовые соединения в единую форму, удобную для анализа и эталонирования [165—169]. Эти методы рассмотрены в гл. 6. [c.88]

    Анализ после озоления пробы. При определении свинца в сырых нефтях возникает еще одна трудность, связанная с высоким содержанием сопутствующих металлов (ванадия, никеля, железа, натрия), концентрация которых в 100—2000 раз превышает концентрацию свинца. Разработан непламенный атомно-абсорбционный метод определения свинца в сырой нефти после кислотного озоления пробы и соосаждения сопутствующих металлов гидроксидом тория [282]. Стандартный раствор неорганического соединения свинца (1,0 мкг/мл) готовят растворением 1,6 г нитрата свинца в 5 мл азотной кислоты (1 2) и разбавлением раствора водой до 1 л. Для приготовления раствора, содержащего 10 мг/мл тория, растворяют гидроксид тория (IV) в азотной кислоте (1 200) и разбавляют водой до нужного объема. [c.182]

    Определение натрия методом добавок атомно-абсорбционным методом (I) и эмиссионным методом (II) [c.114]

    Фирмы, производящие цветные металлы , применяют атомно-абсорбционный метод для определения в свинце серебра, меди, цинка, кадмия и железа в цинке — свинца, кадмия, натрия и железа в кадмии — цинка и таллия в шла- [c.7]

    Одной и.з фирм , занятых переработкой свинцовых концентратов, ранее применявшиеся классические методы определения серебра полностью заменены атомно-абсорбционным методом. Одна из фирм применяет ато.мно-абсорбционный анализ для определения магния в железных рудах, жаропрочных окислах, золах пищевых продуктов, цементах и чугуне, а также цинка в сталях. Ряд предприятий использует атомно-абсорбционные методы анализа для определения кальция,. магния, натрия и калия в золах сахаров и растений меди, кадмия, серебра, хрома, никеля — в растворах для гальванических покрытий меди и свинца — в винах. [c.8]


    Чувствительность определения ртути атомно-абсорбционным методом в пламенном варианте довольно низка и не может удовлетворить запросы практики. Определение ртути в более низких концентрациях очень важно для контроля загрязнений объектов окружающей среды и, в первую очередь, природных и сточных вод. Для снижения предела обнаружения рекомендуется введение восстановителя 5пС12 в анализируемый раствор, через который пропускают воздух. Присутствие ЗпСЬ способствует более полному переведению ртути в газовую фазу и повышает парциальное давление паров в плазме пламени примерно на 2 порядка. Предел обнаружения такого способа определения ртути —ЫО —5-10 % [454], а с применением станнита натрия — 1 10 % [455]. [c.211]

    К настоящему времени чувствительность атомно-абсорбционного метода для элементов с низким потенциалом возбуждения та же, что и чувствительность пламенно-фотометрического метода (1.10 и 1.10 % для натрия и калия соответственно) [59], но существенно выше для элементов с высоким потенциалом возбуждения. Чувствительность определения цинка атомно-абсорбционным методом 5.10 % [15], а пламенно-фотометрического — 5.10 % [105] чувствительность обнаружения магния по линии Mg 2852А составляет для пламенно-фотометрического и атомно-абсорбционного методов 5.10" % [106] и ].10 7о [14, 16, 19 , 79] соответственно чувствительность атомно-абсорбционного обнаружения. марганца в 5 раз, а железа в 50 раз выше чувствительности их обнаружения пламенно-фотометрическим методом. Данные по чувствительности атомно-абсорбционного метода (по разным литературным источникам) и эмиссионного пламеннофотометрического метода [105] представлены графически на рис. 16. [c.47]

    Большое значение при анализе сложных объектов имеет тип прибора и температура пламени. Так, в низкотемпературном пламени влияние кальция на эмиссию натрия снижается. Отмечено, что в пламени водород—воздух литий стабилизирует равновесие ионизации [1107]. В пламени водород—кислород определению 10 мкг/мл натрия не мешает 5 мг/мл калия и лития при использовании атомно-абсорбционного метода [1098]. При определении натрия в молибдокремне-вой, вольфрамокремневой, молибдофосфорной кислотах интенсивность излучения натрия снижается в интервале концентраций  [c.121]

    Влияние анионов на эмиссию и абсорбцию натрия (анионный эффект). Этот вопрос имеет большое практическое значение для правильной подготовки пробы к анализу [32—34, 72, 74—76, 99, 149, 403, 453, 486, 488, 497, 545, 584, 620, 713, 728, 872, 875, 1031, 1208, 1284J. Механизм взаимного влияния при определении элементов атомно-эмиссионным и атомно-абсорбционным методами в пламенах трактуется по-разному с точки зрения физических свойств раствора, особенно при введении органических кислот с позиций изменения условий атомизации за счет образования новых термически более устойчивых соединений натрия при десольватации частиц аэрозоля смещения равновесия атомизации в пламени за счет ионизационных процессов с участием анионов. [c.123]

    Методом спектрометрии пламени натрий определяли в природных водах [150, 164, 272, 279, 299, 318, 513, 527, 646, 719, 802, 888, 949, 986, 1031, 1053, 1081, 1242], в рассолах [1197], минеральной питательной среде [439] и промышленных сбросовых водах [803], в высокочистой воде [279, 567, 1257], в атмосферных осадках [995]. Для определения ультраследовых количеств натрия в воде с пределом обнаружения 1-10 % использовали атомно-абсорбционный метод с непламенной атомизацией [760]. [c.161]

    Атомно-абсорбционный метод применен для определения натрия Б солончаковых и подпочвенных водах с использованием спектрофотометра A arian-Te htron АА-120 [1031]. Источник света — лампа с полым катодом. При электросопротивлении воды 5-10 МОм-см пробы разбавляли в 5 раз. Изучено взаимное влияние элементов и анионов — сульфата и хлорида. В интервале концентраций натрия 5-10 —4-10 % определение проводили по линии 330,2 нм 1 10 — 5-10 % — по линии 589,6 нм (погрешность 4%). Этот же метод применен без разделения и концентрирования [646]. В слабоминерализованной воде натрий определяли после концентрирования в 1000 раз методом электроосмоса 318]. В речной воде определяли натрий без дополнительного разбавления с использованием спектрофотометра, сконструированного на основе спектрографа ИСП-51 с приставкой ФЭП-1 и записью спектра на потенциометре ЭПП-09 в турбулентном пламени пропан—бутан—воздух [164]. [c.163]

    После Ескрытия амиулы металл растворяют в этаноле, затем растворяют осадок вводе и доводят концентрацию раствора по рубидию до 1%, прибавляя смесь (1 1) воды с этанолом. Для анализа используют атомно-абсорбционный метод на основе монохроматора ЗМР-3 с приемником излучения ФЭУ-22, пламя — смесь пропана с воздухом. Источник света — безэлектродные ВЧ-лампы типа ВСБ-2. Рубидий не влияет на определение натрия. Чувствительность анализа повышается за счет применения органического растворителя и нагревания аэрозоля [421]. [c.165]

    Предел определения хрома можно понизить, применяя различные способы концентрирования. Атомно-абсорбционный метод с предварительной экстракцией соединений хрома и введением в пламя органической фазы применяют при анализе различных объектов [407, 728, 752, 762, 780, 789, 900, 1131]. Например, при анализе сточных вод [1131] r(VI) экстрагируют в присутствии диэтилдитиокарбамината натрия метилизобутилкетоном при pH 4 и затем проводят определения хрома в экстракте атомно-абсорбционным методом при 357,9 нм. Хром(П1) экстрагируют затем метилизобутилкетоном в виде комплекса с 8-оксихинолином или НТТА при pH 5—7. Анализ проводят при скорости потоков воздуха 6,0 л/мин и jHj 2 л/мин. Метод позволяет определить 5 мкг Сг в 30 мл пробы 25 мкг Сг можно определить в присутствии 1 мг А1, Си, Fe, Мо и V. При анализе промышленных и других типов вод также используют экстракцию хрома в присутствии диэтилдитиокарбамината натрия метилизобутилкетоном или изопентанолом [780, 900]. Анализ сбросных растворов гальванических ванн проводится путем экстракции r(VI) 1%-ным кси-лольным раствором Амберлита LA-1, подкисленным НС1 до концентрации 1 М. Определению r(VI) в воздушно-ацетиленовом пламени по линии 357,9 нм не мешают < 1 мг r(III), Zn, u, Fe(III), Ni, Mn(II). Мешает Pb в количествах >10 мкг [762]. [c.94]

    В работе [309] описаны два метода определения металлов в консистентных смазках. В первом методе предусматривается кислотное озоление пробы. В платиновой чашке к 2,5 г образца смазки добавляют 0,25 мл п-ксилолсульфоновой кислоты и выпаривают на электроплитке. Сухой остаток помешают в холодную муфельную печь, температуру печи за 4 ч доводят до 550 °С и при этой температуре выдерживают 4 ч. Золу растворяют в смеси 1,25 мл концентрированной серной кислоты, 0,25 мл концентрированной фтороводородной кислоты и 5 мл воды раствор выпаривают, сухой остаток растворяют в 25 мл воды, фильтруют и анализируют. По второму методу 0,2 г смазки смешивают с 4 мл н-бутанола, 4 мл н-гексана и интенсивно перемешивают в делительной воронке вместимостью 250 мл. Затем добавляют 100 мл 1 п. хлороводородной кислоты, интенсивно перемешивают, после отстоя экстракт сливают и анализируют. В обоих случаях растворы анализируют пламенным атомно-абсорбционным методом. Медь, железо, калий, литий, натрий, никель и цинк определяют в воздушно-ацетиленовом пламени (расход воздуха и ацетилена соответственно 7,0 и [c.215]

Рис. 7.4-6. Однокаяальная потокораспределительная система ПИА для определения ионов металлов методом атомно-абсорбционной (АА) спектрометрии пламени. Записи получены при скорости потока 4,9 мл/мин и объеме инжектируемой пробы 150 мкл [7.4-3]. а — градуировочный цикл для 1щнка, полученный при инжектировании стандартных растворов в диапазоне 0,10-2,0 м.д. б — выход самописца для стандартного раствора 1,5 м.д., полученный 1 — при инжектировании через систему ПИА и 2 — при непрерывном распылении в обычном режиме(также со скоростью 4,9 мл/мин). О представляет величину коэффициента дисперсии, которая в случае 2 равна 1 в — градуировочный цикл для серии стандартных растворов свинца (2-20 м.д.), записанный без добавки (0%) и с добавкой (3,3%) хлорида натрия к стандартным растворам. Рис. 7.4-6. Однокаяальная потокораспределительная система ПИА для <a href="/info/628773">определения ионов металлов методом</a> <a href="/info/5509">атомно-абсорбционной</a> (АА) <a href="/info/379563">спектрометрии пламени</a>. Записи получены при <a href="/info/21610">скорости потока</a> 4,9 мл/мин и объеме инжектируемой пробы 150 мкл [7.4-3]. а — градуировочный цикл для 1щнка, полученный при <a href="/info/1155368">инжектировании</a> <a href="/info/8064">стандартных растворов</a> в диапазоне 0,10-2,0 м.д. б — выход самописца для <a href="/info/8064">стандартного раствора</a> 1,5 м.д., полученный 1 — при <a href="/info/1155368">инжектировании</a> через систему ПИА и 2 — при непрерывном распылении в обычном режиме(также со скоростью 4,9 мл/мин). О представляет <a href="/info/264139">величину коэффициента</a> дисперсии, которая в случае 2 равна 1 в — градуировочный цикл для <a href="/info/737376">серии стандартных растворов</a> <a href="/info/352900">свинца</a> (2-20 м.д.), записанный без добавки (0%) и с добавкой (3,3%) <a href="/info/1942">хлорида натрия</a> к стандартным растворам.
    Вторая группа. Предложен косвенный атомно-абсорбционный метод определения хлора, брома и иода в органических соединениях по избытку серебра в растворе после осаждения галогенида серебра. Для анализа невозгоняющихся органических соединений (п-хлоранилин, /г-бромацетанилид) пробу сплавляют с 10-кратным количеством металлического натрия, избыток натрия переводят в щелочной раствор (добавлением воды) и осадок отфильтровывают. Затем 1—4 мл раствора подкисляют азотной кислотой, вводят 5 мл раствора нитрата серебра (100 мкг/мл), осадок галогенида серебра отфильтровывают и избыток серебра в фильтрате определяют атомно-абсорбционным методом. Для анализа возгоняющихся соединений (1-хлорфеназин) пробу растворяют в бутиловом или амиловом спирте при нагревании в колбе с обратным холодильником. Добавляют металлический натрий, кипятят 30 мин и охлаждают. До бавляют воду, осадок отфильтровывают. Далее поступают аналогично первому случаю [365]. [c.260]

    Косвенный атомно-абсорбционный метод определения миллиграммовых количеств иода в органических соединениях основан на его осаждении в виде иодида серебра и определении количества осажденного серебра. В микростакан помещают навеску пробы, содержащей около 50 мг иода, 3 г пероксида натрия, 250 мг нитрата калия и 100 мг сахарозы, переносят в микробомбу и нагревают на микрогрелке. Полученную массу растворяют в 50—60 мл воды, кипятят до разложения образованного пероксида водорода, раствор переводят в мерную колбу вместимостью 100 мл и доливают воду до метки. К 10 мл раствора добавляют серную и азотную кислоты до окрашивания метилового оранжевого в розовый цвет, для восстановления Юз до 1 добавляют 10 мг сульфата гидразина и выдерживают 15 мин на кипящей водяной бане. Иод осаждают избытком 0,005 Л1 раствора нитрата серебра, осадок отфильтровывают на фильтре синяя лента, промывают водой, сразу растворяют в 10%-ном растворе иодида калия, доводят объем раствора водой до 100 мл, разбавляют еще в 10 раз 10%-ным раствором иодида калия и измеряют абсорбционный сигнал серебра по линии [c.261]

    Мальмштадт и Чеймберс [20] при определении натрия и калия атомно-абсорбционным методом использовали вместо монохроматора фильтры. Их система представляла собой устройство с химической компенсацией в пламя сравнения постепенно добавляли стандартный раствор, пока абсорбция этого пламени не становилась равной абсорбции пламени с определяемым раствором. Авторы считают, что ошибка анализа составляла 0,17о от количества элемента, присутствующего в пробе. [c.19]

    Предложен непламенный атомно-абсорбционный метод определения ртути, основанный на измерении поглощения излучения с длиной волны 253,7 нм атомами ртути, которые выделяются потоком воздуха из водного раствора после восстановления ионов ртути до атомного состояния. В качестве восстановителей используют хлорид олова, станнит натрия, аскорбиновую кислоту и другие восстановители в зависимости от присутствия в растворах веществ, мешающих определению ртути (сульфаты, сульфиды, галогениды и др.) [456, 457]. Ртутный анализатор состоит из ультрафиолетового атомно-абсорбционного фотометра без собственного фотоусилителя и показывающего прибора рН-метра. Фотометр имеет источник аналитической линии ртути (253,7 нм), газовую абсорбционную кювету, фотоприемник, микровольтметр и аэратор-барбатер. Предел обнаружения составляет относительное стандартное отклонение 0,05. Данная методика позволяет вести прямое определение ртути в 2 мл пробы и обеспечивает контроль допустимых ее содержаний. [c.211]

    Атомно-абсорбционный метод использован для определения натрия в биологических материалах [9, 10], в золах растений и почвах [5, 11], в пищевых продуктах [5], в галофос-фатных фосфорах [12]. [c.138]

    Атомно-абсорбционные методы определения натрия и калия с применением фильтрофЬтометра описаны в [87, 89, 175]. Выпускается портативный атомно-абсорбционный фильтро-42 [c.42]

    Изучалось влияние кальция (вводился СаСЬ) и фосфат-иона (вводились соли Н3РО4) при этом определение добавленных количеств натрия проводилось как атомно-абсорбционным, так и эмиссионным пламенно-фотометрическим методом. Сравнение полученных результатов показало, что атомно-абсорбционный метод подвергался различным влияниям в значительно меньшей мере, чем эмиссионный метод например, при содержании в растворе 1 % кальция было добавлено 0 20 и 50 мкг мл натрия найдено эмиссионным методом 8 28 и 60 мкг мл, а атомно-абсорбционным методом — 0,5 18 и [c.116]

    Атомно-абсорбционный метод определения ртути в биологических жидкостях, разработанный для установления степени ртутного отравления, описан в [264]. Для создания паров ртути применяется удлиненная кварцевая кювета, нагреваемая электроспиралью (температура нагрева регулируется автотрансформатором ЛАТР-1). Ртутная линия Hg2537 А (источник—лампа БУВ-15) выделяется стеклом УФС-2, сенсибилизированным с внутренней стороны салициловокислым натрием, и регистрируется фотоумножителем ФЭУ-18А фототок измеряется микроамперметром М-95 (полная шкала 50 ма). Анализ проводится в следующей последовательности. [c.154]

    Катионы щелочных металлов не поглощают излучение УФ области спектра, поэтому для их определения применяют косвенное детектирование. Предложен [14] метод определения щелоч-мцн ных металлов с использованием разбавленного раствора сульфата меди (II) в качестве люентз. Разделение проводили на колонке. Zipax S X с последующим детектированием при 220 нм, где катион меди имеет высокое тоглощеиие. Хроматограмма смеси катионов щелочных металлов приведена на рис. 10.3. Этот метод использован [15] для определения целочиых металлов в питьевой воде. Преде-лг,1 обнаружения натрия, калия и аммония явны 0,02 0 07 и 0,3 мкг/мл соответственно. Результаты хорошо согласуются с данными атомно-абсорбционного метода. Такой же [c.158]


Смотреть страницы где упоминается термин К определению натрия атомно-абсорбционным методом: [c.151]    [c.127]    [c.155]    [c.106]    [c.340]   
Смотреть главы в:

Атомно-абсорбционный анализ -> К определению натрия атомно-абсорбционным методом




ПОИСК





Смотрите так же термины и статьи:

Абсорбционный метод

Атомно-абсорбционное определение

Метод определения абсорбционный

Натрий определение методой ПЭС



© 2025 chem21.info Реклама на сайте