Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Валин дрожжах

    Питательная ценность белка дрожжей определяется в первую очередь соотношением входящих в него аминокислот [74] и зависит от вида дрожжей, состава среды и способа выращивания [75]. Однако у отдельных видов дрожжей нет резких различий в содержании аминокислот [76], и это определяет высокую биологическую ценность дрожжевого белка [43, 77, 78]. Белки дрожжей усваиваются организмом на 85—88% по этому показателю они занимают промежуточное положение между белками растительного (65—75%) и животного (90—95%) происхождения [79, 80]. Благодаря высокому содержанию лизина и валина, дрожжи являются хорошим дополнением к белку злаков и улучшают их питательную ценность. Кроме того, дрожжи богаты витаминами группы В и другими ростовыми веществами [58, 81, 82]. [c.78]


    Аминокислоты расщепляются некоторыми грибами, в том числе дрожжами (Эрлих). Как мы уже видели ранее, в ходе спиртового брожения образуются различные высшие спирты (амиловые и бутиловые). Онн обязаны своим возникновением аминокислотному брожению неактивный амиловый спирт брожения получается из лейцина, оптически активный — из изолейцина, изобутиловый — из валина  [c.355]

    Весьма значительные различия в составе обнаружены среди очищенных транспортных рибонуклеиновых кислот из дрожжей [55]. Для нуклеиновых кислот, специфичных к аланину, тирозину и валину, эмпирические формулы являются соответственно [c.408]

    В мелассной и зерно-картофельной барде в небольших количествах имеются различные формы азота (растворимый, аминный, аммиачный). Хроматографическими методами анализа в барде обнаружены следующие аминокислоты лейцин, аргинин, валин, глицин, тирозин, серин, аспарагин (следы), аргинин, фенилаланин, глутаминовая и 7-аминомасляная. Многие из них ассимилируются дрожжами. Однако преобладающая доза азотсодержащих веществ барды, бетаин и глутаминовая кислота дрожжами не усваиваются. [c.214]

Рис. 3.1. Образование диацетила дрожжами (диацетил — побочный продукт биосинтеза валина). Рис. 3.1. <a href="/info/99242">Образование диацетила</a> дрожжами (диацетил — <a href="/info/63596">побочный продукт</a> биосинтеза валина).
    Под влиянием у-лучей у винных дрожжей повышается бродильная, у хлебопекарных— мальтазная активность. Если дрожжи облучать УФ-лучами, то они теряют способность синтезировать лейцин, изолейцин и валин. Таким образом, были получены мутанты, не образующие изоамилового и изобутилового спирта. При обработке хлебопекарных дрожжей УФ-лучами и этнленимииом селекционированы мутанты, превышающие в 2—5 раз контрольные дрожжи по мальтазной активности. [c.202]

    Многие из аминокнслот барды (аргинин, валин, глицпн, лейцин, изолейцин, глютаминовая и аспарагиновая аминокислоты) усваиваются дрожжами. [c.369]

    В рационах сельскохозяйственных животных должно быть до 90—110 г перевариваемого протеина на 1 кормовую единицу. В грубых кормах его содержится не более 50—75 г, поэтому углеводсодержащие корма, несбалансированные по количеству и составу белка, используются нерационально. Кормовые дрожжи — необычный источник белка в рационах животных, они повышают биолог11ческую ценность белков других кормов вследствие того, что содержат не менее 20 аминокислот и все незаменимые аминокислоты (валин, лизин, лейцин, изолейцин, треонин, метионин, фенилаланин и триптофан). [c.369]


    Инактивация фермента наблюдается при модификации карбоксильных фупп, а также остатков арганина, гастидина и тирозина. В непосредственной близости от активного цен-тоа Э. из дрожжей расположен остаток цистеина-247, модификация к-рого приводит к инактивации фермента. Однако в ферментах животного происхождения в этом положении находится остаток валина и нет данных об участии остатков цистеина в формировании активного центра. [c.481]

    В качестве источников углерода дрожжевые клетки могут использовать и низшие спирты — метанол и этанол, получаемые в биотехнологии из природного газа или растительных отходов. Дрожжевая масса, полученная после культивирования дрожжей на спиртах, содержит больше белков (56 — 62 % от сухой массы) и меньше вредных примесей, чем кормовые дрожжи, выращенные на парафинах нефти, такие, как производные бензола, /)-аминокисло-ты, аномальные липиды, токсины и канцерогенные вещества. Кроме того, кормовые дрожжи имеют повышенное содержание нуклеиновых кислот — 3 — 6% от сухой массы, которые в этой концентрации вредно воздействуют на организм животных. В результате их гидролиза образуется много пуриновых оснований, превращающихся затем в мочевую кислоту и ее соли, которые могут быть причиной мочекаменной болезни, остеохондроза и других заболеваний. Тем не менее кормовые дрожжи хорошо усваиваются и перевариваются в организме животных, а по содержанию таких аминокислот, как лизин, треонин, валин и лейцин, значительно превышают многие растительные белки. Вместе с тем белки дрожжей частично не сбалансированы по метионину, в них мало цистеина и селенцистеина. Оптимальная норма добавления дрожжевой массы в корм сельскохозяйственных животных обычно составляет не более 5 —10 % от сухого вещества. [c.11]

    Свертывание пируваткиназы обеспечивается L-валином. Влияние аминокислоты ь-валина на ренатурацию пируваткиназы [466f дрожжей и треониндезаминазы Е. oli [468] иллюстрирует две различные функции, которые могут выполнять лиганды в процессе образования активных олигомерных белков. Пируваткиназа [467] — эго тетрамерный фермент, построенный из четырех идентичных субъединиц, каждая из которых содержит одну молекулу невалентно связанного L-валина. Субъединицы диссоциируют и развертываются при действии 6 М гидрохлорида гуанидина. При выдерживании в ренатурирующей среде L-валин служит специфичным инициатором процесса повторного свертывания. Он индуцирует ренатурацию с константой скорости псевдопервого порядка по отношению к мономеру, а это означает, что L-валин влияет на свертывание мономерной формы в ее нативную конформацию и что завершающим процессом является спонтанное образование тетрамерного фермента. ь-Валин остается составной частью всей структуры молекулы Нативного белка [466]. [c.191]

    В состав белка дрожжей входят почти все необходимые для нормального роста животных и птиц аминокислоты, как-то тирозин, триптофан, метионин, треанин, аргинин, гистидин, лизин, изолейцин, лейцин и валин. [c.335]

    Не менее часто применяют дрожжевой экстракт из клеток Sa haromy es erevisiae, богатый различными веществами —аминокислотами (аргинином — 5%, валином — 5,5%, гистидином — 4%, изолейцином — 5,5%, лейцином — 7,9%, лизином — 8,2%, метионином — 2,5%, тирозином — 5%, треонином — 4,8%, триптофаном — 1,2%, фенилаланином — 4,5%, цистином — 1,5%) и витаминами (биотином — 0,06%, инозитом — 0,3%, кальция пантотенатом — 0,01%, кислотой р-аминобензойной — 0,016%, кислотой никотиновой — 0,059%, кислотой фолиевой — 0,001%, пиридоксина монохлоридом — 0,002%, рибофлавином — 0,01%, тиамина монохлоридом - 0,017%, холинхлоридом — 0,27%) в расчете на сухое вещество. К тому же в биомассе клеток дрожжей содержится до 50% белков. [c.381]

    После установления строения пантотеновой кислоты (Уильямс, Вули, 1940 г.) было проведено несколько синтезов этого соединения (Уильямс, Вули Рейхштейн, Штиллер Р. Кун и Т. Виланд, 1940 г.), из которых приведем синтез, исходя из валина. Эта аминокислота превращается известным путем в а-кетокислоту, дающую в результате конденсации с формальдегидом лактон оксикетокислоты. Восстановление последнего водородом в присутствии платины приводит к получению соответствующего рацемического оксилактона. То же гидрирование, проведенное в присутствии дрожжей в процессе брожения приводит к соответствующему (—)-оксилактону, который конденсируется с р-аланином с образованием пантотеновой кислоты [c.395]

    Во всех жидкостях, полученных путем дрожжевого брожения, содержатся сивушные масла пропанол, 2-бутанол, 2-метилпропанол, амиловый (пентанол) и изоамиловый (триметилбутанол) спирты. Они представляют собой продукты нормального бродильного метаболизма дрожжей и обнаруживаются не только при их росте в сложных питательных растворах, содержащих аминокислоты. Основными компонентами сивушного масла являются побочные продукты обмена изолейцина, лрйцина и валина. [c.271]

    Первую стадию процесса превращения пирувата в валин изучили М. Страссман, А. Томас и С. Вайнхауз [78], выделившие валин из дрожжей, выращенных на среде, которая содержала глюкозу и следовые количества меченого лактата. Распределение двух других углеродных атомов показало, что цепочка из трех углеродных атомов не могла оставаться интактной в ходе этого процесса. Было высказано предположение, что происходила конденсация пирувата с ацет-альдегидом (который возникает при декарбокси-лировании пирувата) с образованием ацетолактата. Далее происходит, по-видимому, миграция метильной группы. Эти изменения, показанные на фиг. 17, соответствовали распределению в этих опытах. [c.47]


    Дрожжи при спиртовом брожении последовательно декарбок-силируют и дезаминируют аминокислоты в спирты. Так, например, валин — источник изобутилового спирта, изолейцин — изоамило-вого спирта. Таково происхождение сивушных масел в сыром спирте, получаемом из пищевого сырья  [c.271]

    КОРМОВЫЕ ДРОЖЖИ. Сухая масса дрожжеподобных грибов, содержащая белок — 47—54, углеводы — 13—16, безазотистые экстрактивные вещества — 22—40, зола —6—9%. В состав белка К. д. ВХ01ДЯТ жизненно необходимые аминокислоты аргинин, гистидин, дизин, лейцин, тирозин, треонин, фенилаланин, метионин, валин, триптофан. К. д. содержат витамины В Вг, нантотеновую кислоту, Ве, биотин и другие. В К. д. находится также эргостерин, который после облучения ультрафиолетовым светом образует витамин Вг. За счет микробиологического синтеза, производимого специальными микроорганизмами, можно обогащать К. д. витаминами Вг и Б12 и антибиотиками. Зола дрожжей содержит ценные для животных микроэлементы и в большом количестве фосфор, калий, магний и кальций. [c.154]

    Изобутиловый спирт образуется из аминокислоты валин при спиртовом брожении, вызываемом дрожжами. Структурная формула адшнокислоты валин  [c.26]

    В начале нашего столетия Эрлих описал биохимическое расщепление серии аминокислот. Оказалось, что дрожжи в процессе брожения перерабатывают преилпществснно ь-ф< р-мы аминокислот, а их оптические антиподы накапливаются. Таким путем могут быть выделены с выходом 60—/0% оптически чистые D-изомеры аланина, лейцина, валина, изолейцина, изо-валина, серина, фенилаланина, глутаминовой кислоты, гистидина. Однако подобным биохимическим методом удается расщепить не все аминокислоты. Фенилглицин получается лишь с небольшим вращением, а рацематы аспарагиновой кислоты, пролина и тирозина совсем не расщепляются действием бродящих дрожжей. [c.574]

    Дображивание. После основного брожения хлопьевидные (флокулированные) дрожжи собирают, а пиво охлаждают для последующего дображивания. В ходе дображивания сбраживаются оставшиеся сахара, и пиво насыщается выделяющейся двуокисью углерода (СО2). При этом определяется вкус пива, прежде всего из-за сокращения количества диацетила, придающего продукту маслянистый привкус. Диацетил представляет собой побочный продукт синтеза изолейцина и валина и образуется в ходе декарбоксилирования а-ацетолактата (рис. 3.1). Дрожжи восстанавливают диацетил до ароматически нейтральных соединений — ацетоина и бутандиола. При дображива-нии происходит дальнейшая флокуляция дрожжей, вследствие чего пиво становится еще прозрачнее. Классическое дображивание может занимать несколько недель и даже месяцев. Оно проводится в закрытых невысоких емкостях или, что более распространено в настоящее время, в цилиндроконических танках — таких же, какие применяются для основного брожения. После дображивания пиво для удаления оставшихся дрожжей можно отфильтровать, после чего оно готово к розливу в бутылки и употреблению. [c.68]

    Микробиологический метод синтеза аминокислот основан на способности многих микроорганизмов накапливать в среде значительные количества таких продуктов. Среди микроорганизмов, получивших оценку как потенциальные продуценты глутаминовой кислоты, обнаружено много бактерий, ряд дрожжей и других грибов. Большинство обследованных штаммов микроорганизмов независимо от их систематического положения преимущественно накапливают а-аланин и глутаминовую кислоту. Значительно меньше штаммов и в меньшем количестве выделяют аспарагиновую кислоту, лейцин, валин, изолейцин, лизин. Строгой корреляции между видовой принадлежностью микроорганизмов и способностью их накапливать аминокислоты нет. [c.340]

    Гидролизаты, полученные из верхового малоразло-жившегося торфа, являются также высокоэффективным субстратом для производства дрожжей и продуцентов аминокислот, липидов и каротиноидов (Получение..., 1977 Гайлитис, 1978 Богдановская и др., 1978). Выяснено (Богдановская, 1980), что аминокислотный состав белка дрожжей, выращенных на гидролизатах торфа, по количеству и качеству не уступает составу аминокислот белка этих же дрожжей, выращенных на солодовом сусле, в то же время количество метионина в них вдвое больше, а наличие незаменимых аминокислот — лизина, треонина, валина, лейцина — свидетельствует о высоком качестве белка этих дрожжей. [c.14]

    Осн. исследования посвящены установлению структуры нуклеиновых к-т и нуклеопротеидов, а также выяснению механизма их функционирования. Принимал участие в руководимых А. А. Баевым работах (1967) по расшифровке последовательности нуклеотидов валиновой тРНК дрожжей. Локализовал (1967—1972) в валиновой тРНК участки, функционально важные для ее взаимодействия с валин-тРНК-лигазой и рибосомальными субчастицами. Провел (1974— 1976) работы, основанные на предложенном им методе использования модификации ДНК диметил-сульфатом для локализации взаимодействия различных классов белков, антибиотиков и др. лигандов с двойной спиралью ДНК по двум ее бороздкам. Развил (1977) новое направление, связанное с расшифровкой первичной организации нуклеопротеидов. Установил [c.300]


Смотреть страницы где упоминается термин Валин дрожжах: [c.166]    [c.189]    [c.391]    [c.465]    [c.410]    [c.367]    [c.26]    [c.465]    [c.34]    [c.300]    [c.147]    [c.80]   
Аминокислотный состав белков и пищевых продуктов (1949) -- [ c.301 , c.373 ]




ПОИСК





Смотрите так же термины и статьи:

Валин

Дрожжи



© 2025 chem21.info Реклама на сайте