Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цикл лимонной кислоты при окислении аминокислот

    В основном ферменты синтеза нуклеиновых кислот, а в митохондриях — ферменты процессов аэробного окисления углеводов и жирных кислот (весь набор цикла лимонной кислоты), превращения отдельных аминокислот. В мембранах митохондрий локализованы ферменты дыхательной цепи и процессов окислительного фосфорилирования, катализирующие реакции образования АТФ. В рибосомах сосредоточены ферменты биосинтеза белка, а в лизосомах — ферменты гидролитического расщепления различных веществ. Каждый фермент катализирует определенную специфическую реакцию, что обеспечивает упорядоченность многостадийных метаболических процессов. [c.89]


    Цикл лимонной кислоты перенос электронов и окислительное фосфорилирование окисление жирных кислот катаболизм аминокислот [c.398]

    В этой главе мы рассмотрим открытый Кребсом цикл лимонной кислоты, называемый также циклом трикарбоновых кислот. Это общий конечный путь для окисления ацетильных групп, в которые превращается в процессе катаболизма большая часть органических молекул, играющих роль клеточного топлива-углеводов, жирных кислот и аминокислот. [c.478]

    Интеграция обмена веществ. Процессы обмена углеводов, жиров и белков тесно взаимосвязаны благодаря наличию общего продукта их обмена — ацетил-КоА. Образуется ацетил-КоА (СН3-СО-К0А) при распаде глюкозы, жирных кислот, аминокислот и объединяет эти процессы, а затем вступает в основной метаболический путь цикл лимонной кислоты, где окисляется до СО2 и Н2О с высвобождением энергии. Имея макроэр-гическую химическую связь, ацетил-КоА не только легко вовлекается в процесс окисления в указанном цикле, но и используется как строительный материал при биосинтезе различных веществ (см. рис. 98). Аце-тил-КоА используется в тканях для биосинтеза жирных кислот, образова- [c.267]

    Во второй том вошли материалы по биоэнергетике и метаболизму клетки. Рассмотрены роль глюкозы в биоэнергетических процессах, цикл лимонной кислоты, электронный транспорт, окислительное фосфорилирование, регуляция образования АТФ, окисление жирных кислот в тканях животных, окислительный распад аминокислот, биосинтез углеводов, липидов, нуклеотидов, аминокислот, а также фотосинтез. [c.372]

    Хотя роль аминокислот в организме определяется в первую очередь тем, что они служат строительными блоками для биосинтеза белков, в известных условиях они могут претерпевать и окислительное расщепление. Это возможно в трех случаях. 1) Если аминокислоты, высвобождающиеся при обычном динамическом обновлении белков, не используются для синтеза новых белков, то они подвергаются окислительному расщеплению. 2) Если организм получает с пищей больше аминокислот, чем это ему необходимо для белкового синтеза, то избыточное их количество расщепляется, потому что аминокислоты не откладываются в организме в запас. 3) Бо время голодания или при сахарном диабете, т.е. тогда, когда углеводов нет или когда их утилизация нарушена, в качестве топлива используются белки. Во всех этих ситуациях аминокислоты теряют свои аминогруппы и превращаются в соответствующие а-кетокислоты, которые затем окисляются до СО2 и воды частично это окисление идет через цикл лимонной кислоты. [c.571]


    Значение метода меченых атомов (и особенно С ) для детального исследования биологических процессов трудно переоценить. В качестве наглядного примера можно указать на установление роли цикла лимонной кислоты как основного пути окисления продуктов обмена липоидов и аминокислот. Этот пример наряду с многими другими рассматривается в работе [41. [c.200]

    Структура и функция митохондрий. Митохондрии - это цитоплазматические органеллы. Их количество и форма варьируют в зависимости от функции клетки. Например, у млекопитающих в клетках печени имеется по 1000-1500 митохондрий. Все они имеют общие структурные особенности матрикс, внутреннюю и внешнюю мембрану (рис. 2.98). Внутренняя мембрана образует характерные складки иногда в виде крист , иногда в виде трубочек . Митохондрии осуществляют важные биохимические функции, в частности, именно в них происходит аэробное окисление. Вот почему эти органеллы часто называют энергетической фабрикой организма. Энергия хранится в АТР (аденозинтрифосфат). Из трех энергетических источников нашей пищи аминокислоты и жиры подвергаются распаду только в результате аэробного окисления, которое происходит в митохондриях. Кроме того, в них осуществляется цикл лимонной кислоты. Мембрана митохондрий содержит упорядоченную мультиферментную систему, а распределение ферментов в функционально значимом порядке гарантирует упорядоченную последовательность биохимических реакций. [c.146]

    Главная функция цикла лимонной кислоты состоит в том, что он является общим конечным путем окисления углеводов, липидов и белков, поскольку в ходе метаболизма глюкоза, жирные кислоты и аминокислоты превращаются либо в ацетил-СоА, либо в промежуточные соединения рассматриваемо- [c.172]

    О Перенос электронов окислительное фосфорн-лирование цикл лимонной кислоты окисление жирных кислот, окисление аминокислот синтез мочевины удлинение цепи жирных кислот [c.389]

    Те аминокислоты, которые не были использованы в печени или в других органах для биосинтеза белков, подвергаются дезаминированию и распадаются с образованием ацетил-СоА и промежуточных субстратов цикла лимонной кислоты (разд. 22.21). Последние могут превратиться в глюкозу и гликоген путем глюконеогенеза (разд. 20.1). Ацетил-СоА либо подвергается окислению в цикле лимонной кислоты с накоплением энергии, запасаемой в форме АТР, либо превращается в хшпиды, которые, как было описано выше, откладываются в запас. Высвобождающийся при распаде амино- [c.754]

    Вслед за открытием -аминомасляной кислоты в ткани мозга в этом органе была обнаружена декарбоксилаза глутаминовой кислоты [214, 215]. Некоторые другие ткани также проявляют слабую глутаматдекарбоксилазную активность, однако в основном образование -[-аминомасляной кислоты происходит в мозге. Значение этой аминокислоты и пути ее превращения в организме окончательно не выяснены. Известно, однако, что -аминомасляная кислота вступает в реакцию переаминирования с а-кетоглутаровой кислотой, причем образуются глутаминовая кислота и полуальдегид янтарной кислоты (стр. 227). Поэтому есть основание думать, что обмен этой аминокислоты может протекать путем ее окисления в цикле лимонной кислоты через янтарную кислоту  [c.202]

    Для непрерывного окисления ацетил-КоА в цикле лимонной кислоты (ЦЛК) необходимо постоянное присутствие оксалоащ тата. Это обычно обеспечивается циклической природой самого процесса однако из сказанного следует также, что если компоненты цикла — все или только некоторые из них — расходуются на синтетические процессы (биосинтез аминокислот, пуринов, пиримидинов, пентозных предшественников нуклеиновых кислот и коферментов, порфиринов и т. д.), то должны существовать какие-то способы для возмещения расхода. У животных эти анаплеротические цепи реакций обеспечиваются реакциями карбоксилирования, посредством которых происходят взаимопревращения пирувата и дикарбоновых кислот цикла. Еще один процесс, в котором используется предварительное карбоксилиро-вапие,— это превращение пировиноградной кислоты в пропионовую кислоту при брожении у пропионовокислых бактерий. Этот процесс служит как бы обходным путем для того, чтобы преодолеть препятствие в виде пируватки-пазной реакции на пути синтеза углеводов. В конечном итоге оксалоацетат легко декарбоксилируется ферментативным и неферментативным путем. В превращении Сд С1 = С4 участвуют главным образом следующие реакции  [c.298]

    Цикл лимонной кислоты (синоним цикл трикарбоновых кислот), часто связываемый с именем Кребса это, образно говоря, та главная ось, вокруг которой вертится метаболизм почти всех суш еству1ощих клеток. Естественно поэтому, что он займет центральное место и в нашем обсуждении. Значение этого цикла, первоначально постулированного для объяснения полного сгорания пирувата (и, таким образом, углеводов), а также дву- и трехуглеродных конечных продуктов окисления жирных кислот, вышло далеко за рамки этих и им подобных чисто катаболических функций, связанных с выработкой энергии. Цикл Кребса является фокусом , в котором сходятся все метаболические пути (см. гл. XI). Поэтому его реакции и субстраты играют решаюш,ую роль в биосинтезе (анаболизме) множества важных соединений, начиная от аминокислот, пуринов и пиримидинов и кончая жирными кислотами с длинной цепью и порфиринами. [c.348]


    Цикл лимонной кислоты (или цикл трикарбоновых кислот), открытый английским биохимиком Кребсом в 1937 г., является центральным путем метаболизма ("котлом сгорания") углеводов, жиров и аминокислот, а также извлечения энергии из окисляемых веществ. Протекает он в матриксе митохондрий и включает 8 основных реакций, в ходе которых происходит постепенное окисление ацетил-КоА (активная форма уксусной кислоты) до образования конечного продукта обмена СО2 с накоплением энергии в виде трех молекул НАДН, двух молекул ФАДН2 и молекулы ГТФ. Два атома углерода в молекуле ацетил-КоА при полном обороте цикла превращаются в две молекулы СО2. Последовательность превращений в цикле трикарбоновых кислот показана на рис. 18 (жирным выделены промежуточные продукты цикла, светлым — ферменты, катализирующие превращения веществ, которые находятся в матриксе митохондрии). [c.51]

    Образование глутаминовой кислоты занимает центральное место в биосинтезе аминокислот, так как именно при синтезе этой аминокислоты неорганическое соединение аммиак превращается в органический амин. Как видно из фиг. 30, на одном из средних этапов цикла лимонной кислоты происходит образование пятиуглеродной дикарбоновой кислоты— а-кетоглутаровой. Под действием фермента глутаматдегидрогеназы а-кето-группа образовавшейся а-кетоглутаровой кислоты замещается ионом неорганическою аммония, что приводит к образованию глутаминовой кислоты. Этот этап, получивший название аминирования, включает восстановление а-кетогруппы, сопряженное с окислением одной молекулы НАД-Н в НАД  [c.71]

    Карбамоилфосфатсинтаза вместе с митохондриальной глутаматдегидрогеназой направляет азот глутамата (и, следовательно, вообще всех аминокислот, см. рис. 30.2) в карбамоилфосфат и далее в мочевину. Хотя константа равновесия реакции, катализируемой глутаматдегидрогеназой, благоприятствует образованию глутамата, а не аммиака, удаление аммиака карбамоилфосфатсинтазой и окисление а-кетоглутарата в цикле лимонной кислоты способствуют катаболизму глутамата. [c.315]

    Электроны переносятся к Ог по электронпереносящей цепи, которая рассматривается позднее, а свободная энергия, освобождающаяся в ходе этого процесса, сохраняется в форме АТР. Таким образом, за счет окисления ацетил-СоА в цикле лимонной кислоты клетки получают большую часть всей той потенциальной энергии, которая должна освободиться при окислении глюкозы, жирных кислот и аминокислот. Теперь можно рассмотреть более подробно индивидуальные реакции цикла. [c.398]

    В Предыдущей главе мы рассмотрели гликолитический путь, в ходе которого происходит превращение глюкозы в пируват. В аэробных условиях следующим этапом генерирования энергии из глюкозы является окислительное декарбоксилирование пирувата с образованием ацетил-СоА. Этот активированный ацетильный компонент далее полностью окисляется до GO2 в цикле трикарбоновых кислот, последовательности реакций, известных также как цикл лимонной кислоты, или цикл Кребса. Цикл трикарбоновых кислот представляет собою конечный общий путь окисления топливных молекул - аминокислот, жирных кислот и углеводов. Большинство топливных молекул вступают в этот цикл после превращения в ацетил-СоЛ. Цикл трикарбоновых кислот вьшол= няет еще одну функцию - поставляет промежуточные продукты для процессов биосинтеза. Реакции цикла трикарбоновых кислот происходят в митохондриях в противоположность реакциям гликолиза, которые протекают в цитозоле. [c.49]

    Все реакции цикла были проведены отдельно с чистыми веществами, а некоторые ферменты удалось выделить в чистом виде. Доказано, что лимонная, а-кетоглутаровая, фумаровая и яблочная кислоты являются нормальными компонентами всех живых клеток. Поэтому принято считать, что конечное окисление углеводов протекает по этому механизму. Из приведенной ниже схемы видно, что некоторые промежуточные продукты этого процесса в результате нереаминирования гладко превращаются в аминокислоты и легко образуются из главных аминокислот — аланина, аспарагиновой и глутаминовой кислот (см. главу Аминокислоты ). [c.256]


Смотреть страницы где упоминается термин Цикл лимонной кислоты при окислении аминокислот: [c.801]    [c.453]    [c.200]    [c.318]    [c.171]    [c.407]    [c.89]    [c.200]    [c.318]    [c.204]    [c.8]   
Основы биохимии Т 1,2,3 (1985) -- [ c.576 , c.577 , c.584 ]




ПОИСК





Смотрите так же термины и статьи:

Лимонен

Лимонит

Лимонная кислота

Лимонная кислота в лимонах



© 2024 chem21.info Реклама на сайте