Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

также Цикл трикарбоновых кислот

    Этот цикл называют также циклом трикарбоновых кислот. — Прим. перев.  [c.403]

    В этой главе мы рассмотрим открытый Кребсом цикл лимонной кислоты, называемый также циклом трикарбоновых кислот. Это общий конечный путь для окисления ацетильных групп, в которые превращается в процессе катаболизма большая часть органических молекул, играющих роль клеточного топлива-углеводов, жирных кислот и аминокислот. [c.478]


    Цикл лимонной кислоты называют также циклом трикарбоновых кислот Это второе название появилось в связи с тем, что в течение нескольких лет после того, как Кребс постулировал существование цикла, не было полной уверенности в том, какая именно из трикарбоновых кислот (лимонная или, например, изоли-монная) является первым продуктом конденсации пирувата с оксалоацетатом. Эта неопределенность, как мы увидим ниже, теперь устранена. В настоящее время точно известно, что первой из трикарбоновых кислот образуется именно лимонная кислота. Поэтому лучше всего называть данный метаболический путь [c.484]

    Анаэробный гликолиз происходит не в митохондриях, но зато именно там протекают последующие стадии дыхания — цикл Кребса (называемый также циклом трикарбоновых кислот и циклом лимонной кислоты) и конечное дыхание. Эти реакции изучены до мельчайших подробностей. Нас здесь будет интересовать только основной принцип. Он состоит в том, что пировиноградная кислота расщепляется все дальше и дальше, до углекислого газа (СОг) и водорода (Нг), а в заключение водород окисляется кислородом воздуха (следовательно, этот этап процесса дыхания является аэробным) с образованием воды. Так как СОг и НгО представляют собой бедные энергией конечные продукты, следовательно, энергия, заключавшаяся ранее в пировиноградной кислоте, должна была перейти в какую-то иную форму. Часть ее (небольшая), очевидно, переходит в тепло большая же часть энергии обнаруживается в богатом энергией химическом соединении — это наш старый знакомый АТФ, который известен как универсальный донор энергии для клетки. [c.223]

    Указанные ранее сопряженные, последовательные и параллельные химические реакции также протекают в открытых системах, но особенно типичными для них являются многоступенчатые изменения, происходящие в виде циклов биохимических реакций, как, например, цикла трикарбоновых кислот при обмене углеводов и жиров или цикла Кребса при синтезе мочевины и др. При обмене веществ протекают процессы линейного, разветвленного и циклического характера, которые принципиально отличны по химической кинетике от простых цепных реакций. Нужно учитывать, что в отличие от постоянного повторения однотипного процесса, наблюдающегося в цепных реакциях, в биологических процессах почти каждая молекула может быть вовлечена в несколько различных реакций. Выбор пути химических превращений, по которому пойдет каждая молекула, в значительной степени является случайным. [c.94]


    Перенос электронов от субстратов цикла трикарбоновых кислот к кислороду, сопровождающийся образованием воды, осуществляется сложной полиферментной системой, локализованной во внутренней мембране митохондрий. Последовательность функционирования отдельных дыхательных переносчиков в значительной мере была выяснена благодаря применению ингибиторного анализа, а также спектрофотометрических исследований. В настоящее время строение дыхательной цепи может быть представлено схемой на рис. 51. [c.435]

    Использование изотопных меток при изучении цикла трикарбоновых кислот, т. 2, стр. 322 Сильный яд грибов а-аманитин т. 3, стр. 211 Токсичные белки дифтерийный токсин г. 3, стр. 305. См. также гл. 12, разд. И, 4 [c.380]

    Для обеспечения клеток максимальным количеством энергии необходимо, чтобы отщепляемые от жирных кислот ацетильные остатки, содержащие два атома углерода, были полностью окислены до двуокиси углерода. Химическое окисление ацетильной группы осуществляется нелегко, и, вероятно, поэтому природа изобрела элегантный каталитический цикл, называемый циклом трикарбоновых кислот (а также циклом лимонной кислоты, или циклом Кребса). На рис. 7-1 этот цикл изображен в правом нижнем углу. Содержащая четыре атома углерода щавелевоуксусная кислота (оксалоацетат) конденсируется с ацетильной группой молекулы ацетил-СоА с образованием лимонной кислоты, молекула которой построена из шести атомов углерода. Затем в ходе дальнейших реакций цикла происходит удаление двух атомов углерода [c.84]

    Ацетоацетил-СоЛ, который в организме, по-вндимому, находится в равновесии с ацетил-СоА, является важным промежуточным продуктом [12а]. Он не только может расщепиться на две молекулы аце-тил-СоА и таким образом войти в цикл трикарбоновых кислот, но служит также предшественником при синтезе изопреноидных соединений, в том числе и холестерина (гл. 12, разд. И). Не менее важное значение имеет ацетоацетат, один из компонентов крови. [c.315]

    Для завершения окисления жирных кислот ацетильные остатки молекулы ацетил-СоА, образовавшиеся в результате реакций р-окисления, должны быть окислены до двуокиси углерода и воды [14]. Цикл трикарбоновых кислот, в ходе которого осуществляется это окисление, является жизненно важной частью метаболизма почти всех аэробных организмов. Центральное место этого цикла в метаболизме обусловлено еще и тем, что ацетил-СоА образуется также в процессах катаболизма углеводов и некоторых аминокислот. [c.317]

    Возникло предположение, что включение СО2 в сукцинат происходит также в животных тканях, н для проверки этого предположения Вуд исследовал метаболизм препарата печени голубя при этом для блокирования сукцинатдегидрогеназы был добавлен малонат (дополнение 9-В). К удивлению исследователя накапливающийся сукцинат не содержал изотопа С. Вскоре, однако, было показано, что СО2 включается в карбоксильную группу а-кетоглутарата, смежную с карбонильной группой. При последующем превращении в сукцинат этот карбоксил утрачивается (рис. 9-2), что и объясняет отсутствие С в сукцинате. В историческом плане примечательно, что эти наблюдения были неправильно интерпретированы большинством биохимиков того времени. Они согласились, что цитрат не принимает участия в цикле трикарбоновых кислот. [c.322]

    Схема регуляции гликолиза и цикла трикарбоновых кислот (см также [c.325]

    Серьезное исследование цепи переноса электронов и окислительного фосфорилирования началось вслед за тем, как Кеннеди и Ленинджер в 1949 г. показали, что митохондрии являются не только местом синтеза АТР, но также местом функционирования цикла трикарбоновых кислот и окисления жирных кислот. Чанс (1959 г.) завершил разработку новой элегантной спектрофотометрической установки. Полученные данные позволили ему постулировать следующую последовательность переносчиков в дыхательной цепи  [c.363]

    Таким образом, критическим фактором в регуляции этого фермента, так же как и многих других ферментов, участвующих в процессах гликолиза и глюконеогенеза, является стадия фосфорилирования адениловой системы. Имеются основания считать, что эту первую и наиболее важную стадию гликолиза включает АМР. Состояние адениловой системы оказывает влияние также на последующие стадии при гликолизе и в цикле трикарбоновых кислот. Таким образом, уменьшение концентрации АТР вызывает ингибирование процесса окисления пирувата и изоцитрата. Кроме того, в начальной стадии фосфоролиза гликогена и при окислении триозофосфатов необходимо наличие неорганического фосфата. Следовательно, быстрое потребление АТР клеткой (например, при мышечном сокращении) приводит к уменьшению концентрации АТР и увеличению концентрации АМР и Pi. Все эти изменения активируют процесс гликолиза. Однако, если мышечная активность прекращается и содержание АТР возрастает, наблюдается ингибирование сразу нескольких стадий гликолиза (рис. 11-11). [c.511]


    Цикл трикарбоновых кислот (цикл Кребса) представляет собой конечный общий путь для окисления топливных молекул. Большинство топливных молекул вступает в цикл в виде ацетил-КоА. Окислительное декарбоксилирование пирувата, приводящее к образованию ацетил-КоА, является связующим звеном между гликолизом и циклом трикарбоновых кислот. Заметим, что последний служит также источником строительных [c.358]

    Яблочная и лимонная кислоты принимают участие в цикле трикарбоновых кислот, называемом также циклом лимонной кислоты, или циклом Кребса, — универсальном этапе окислительного катаболизма углеводов, липидов и других соединений в присутствии кислорода. В ходе цикла трикарбоновых кислот происходит, кроме того, образование предшественников аминокислот. [c.260]

    Наиболее детально вопрос о распределении биохимических процессов между клеточными органеллами изучен на примере митохондрий. Главным назначением митохондрий является окислительное фосфорилирование. В митохондриях происходят такие процессы, как цикл трикарбоновых кислот, окисление жирных кислот, собственно окислительное фосфорилирование и некоторые другие превращения, о которых будет сказано ниже. Системы, осуществляющие перечисленные процессы, распределены между различными отделами митохондрий. Так, комплекс белков, осуществляющих перенос электронов от NAD-Н к молекулярному кислороду и сопряженное фосфорилирование АДФ, полностью вмонтирован во внутреннюю митохондриальную мембрану. Цикл трикарбоновых кислот функционирует в митохондриальном матриксе, за исключением стадии дегидрирования сукцината, которое осуществляется с помощью сукцинат дегидрогеназы, также входящей в состав внутренней мембраны. Пируватдегидрогеназный комплекс и система ферментов, катализирующих окисление жирных кислот, поставляющие ацетил-СоА в цикл трикарбоновых кислот, целиком сосредоточены в матриксе. [c.433]

    Третий этап — это реакции цикла трикарбоновых кислот, процесса, наглядно демонстрирующего единство метаболических превращений. Это основной амфиболический путь, обеспечивающий, с одной стороны, полное окисление ацетил-КоА, образовавшегося при распаде веществ разных классов (аминокислоты, углеводы, липиды) до СО2 и Н2О, и, с другой стороны, — предоставляющий исходные соединения для биосинтеза различных соединений. Цикл трикарбоновых кислот играет также центральную роль в энергети- [c.445]

    Еще в прошлом веке биологи заметили, что в отсутствие воздуха (в анаэробных условиях) клетки образуют молочную кислоту (или этанол), тогда как в аэробных условиях они используют кислород, образуя СО2 и Н2О- Усилия по выяснению путей аэробного метаболизма в конце концов сосредоточились на окислении пирувата и привели в 1937 г. к открытию цикла лимонной кислоты, называемого также циклом трикарбоновых кислот или циклом Кребса. В большинстве клеток в цикле лимонной кислоты происходит около двух фетей всех реакций окисления углеродных соединений. Главные конечные продукты этого цикла - СО2 и NADH. СО2 выделяется как побочный продукт, а молекулы NADH передают свои богатые энергией электроны в дыхательную цепь, в конце которой эти электроны используются для восстановления О2 до Н2О. [c.437]

    Несмотря на многообразие источников углерода в результате функционирования таких метаболитных последовательностей, как гликолиз, пути Энтнера—Дударова и пентозофосфатный, а также цикл трикарбоновых кислот, почти всегда образуются одни и те же углеродные предшественники аминокислот и лишь синтез гистидина имеет несколько обособленный путь. В табл. 1 приведены все известные предшественники и образующиеся из них аминокислоты. [c.16]

    Цикл трикарбоновых кислот — один из наиболее известных биохимических процессов. Он является типичным для многих подобных последовательных клеточных реакций, в результате которых относительно большое число субстратов может превращаться путем циклических серий реакций, включающих очень небольшое число интермедиатов. В цикле трикарбоновых кислот (также называемом циклом Кребса или циклом лимонной кислоты) суммарная реакция — это окисление уксусной кислоты до диоксида углерода и воды. Этот процесс может либо служить источником энергии, либо давать промежуточные соединения, используемые в биологических синтезах. Уксусная кислота вступает в цикл в виде ацетилкофермента А СНзСОЗСоА, дальнейшие превращения показаны на схеме. Все стадии синтеза сравниваются с процессами, происходящими в обычной химии, многие важные биохимические аспекты опущены. [c.260]

    Цикл лиионнои кислоты. Последовательность реакций, которая начинается с превращения щавелевоуксусной кислоты в лимонную нри участии ацетилкофермента А в конечном итоге образуются 2 моля диоксида углерода (что соответствует двум атомам углерода, присоединившимся к щавелевоуксусной кислоте). Эту последовательность реакций называют циклом, так как на последней стадии регенерируется щавелевоуксусная кислота. Процесс изображен на рис. 20-5 и называется также циклом Кребса или циклом трикарбоновых кислот. [c.195]

    См. также индивидуальные представители смесь, см. Попова правило удлииеиие цепи, см. Арндта-Айс-терта реакция циклы, см. Глиоксилатный цикл, Трикарбоновых кислот цикл эфиры 1/443, 619, 620, 644, 1075, [c.620]

    Цикл трикарбоновых кислот, являясь одним из наиболее важных циклов метаболизма аэробных организмов (бактерий, простейших, грибов, высших растений и человека), представляет собой к тому же типичный каталитический цикл. Во всех других циклах также принимают участие один или несколько первичных субстратов и по меньшей мере один регенерирующийся субсграт. Таким образом, с каталитическим циклом всегда ассоциирован метаболический путь, обеспечивающий синтез регенерирующегося субстрата. Хотя, как правило, и не требуется, чтобы такой синтез шел быстро, поскольку обычно бывает необходимо восполнить лишь небольшие потери регенерирующегося субстрата в побочных реакциях, однако используемый при этом метаболический путь обеспечивает механизм биосинтеза любых необходимых количеств любого промежуточного продукта, образующегося в ходе цикла. Так, клетки получают из цикла трикарбоновых кислот значительные количества оксалоацетата, а-кетоглутарата и сукци-нил-СоА, используя их для синтеза других клеточных компонентов. Например, аспартат и глутамат образуются непосредственно из оксалоацетата и а-кетоглутарата путем переаминирования [уравнение (8-16)]. Часто говорят, что цикл трикарбоновых кислот работает на биосинтез, однако, строго говоря, когда из цикла выводятся промежуточные продукты, работает неполный цикл. Правильнее сказать, что метаболический путь синтеза регенерирующегося субстрата и еще некоторые из ферментов цикла используются для формирования тех или иных путей биосинтеза. [c.323]

    Упоминание о митохондриях обычно вызывает у биохимиков представление о цикле трикарбоновых кислот, -окислительном пути метаболизма жирных кислот и окислительном фосфорилировании. Помимо этих главных процессов в митохондриях протекает множество других химических превращений. Вероятно, наиболее существенное из ннх — это концентрирование ионов, таких, как ионы Са +. Митохондрии также контролируют приток и отток многих соединений, в том числе я АТР. Таким образом, они выполняют важные регуляторные функцна> как в катаболических процессах, так и в процессах биосинтеза. По мере своего роста и размножения митохондрии синтезируют часть своих белков, а ряд других белков получают из цитоплазмы. [c.393]

    РИС. 11-11. Сопряженные друг с другом пути гликолиза, глюконеогенеза и окисления жирных кислот, а также синтезов с указанием некоторых способов регуляции (—") — реакции гликолиза и окисления, протекающие через цикл трикарбоновых кислот. Сплошные жирные стрелки указывают путь углерода от гликогена (верхний правый угол) к СОг. ( ->)—биосинтетические пути. Прерывистые жирные стрелки означают глюко-неогенезный путь от пирувата через оксалоацетат и малат. [c.512]

    С, т. кип. 165 °С) — одно из центральных соединений в цикле трикарбоновых кислот. Она является также одним из промежуточных продуктов при молочнокислом и спиртовом брожении углеводов. Может быть получена при взаимодействии ацетил-хлорида с цианидом калия с последующим гидролизом образующегося кетононитрила или путем окисления молочной кислоты. [c.264]

    Кроме того, скорость процесса гликолиза зависит от поступления в клетку исходньгх продуктов и накопления ряда промежуточных метаболитов. Так, гексокиназа ингибируется также продуктом этой реакции глюкозо-6-фосфа-том. Роль главного регуляторного фермента гликолиза играет фосфофруктокиназа, которая, кроме АТФ, ингибируется цитратом — центральным метаболитом цикла трикарбоновых кислот. [c.251]

    Для всестороннего изучения морфолого-физиологических свойств и продуктов обмена, прежде всего, микробов все ранее предложенные способы их выращивания оказались малопригодными Более того, накопление однородной по возрасту большой массы клеток оставалось исключительно трудоемким процессом Вот почему требовался принципиально иной подход для решения многих задач в области биотехнологии В 1933 году А. Клюйвер и Л X Ц Перкин опубликовали работу "Методы изучения обмена веществ у плесневых грибов", в которой изложили основные технические приемы, а также подходы к оценке и интерпретации получаемых результатов при глубинном культивировании грибов С этого времени начинается третий период в развитии биологической технологии — биотехнический Началось внедрение в биотехнологию крупномасштабного герметизированного оборудования, обеспечившего проведение процессов в стерильных условиях Особенно мощный толчок в развитии промышленного биотехнологического оборудования был отмечен в период становления и развития производства антибиотиков (время второй мировой войны 1939 — 1945 гг, когда возникла острая необходимость в противомикробных препаратах для лечения больных с инфицированными ранами) Все прогрессивное в области биологических и технических дисциплин, достигнутое к тому времени, нашло свое отражение в биотехнологии Следует отметить, что уже в 1869 г Ф Мишер получил "нуклеин (ДНК) из гнойных телец (лейкоцитов), В Оствальд в 1893 г установил каталитическую функцию ферментов, Т Леб в 1897 г установил способность к выживанию вне организма (в пробирках с плазмой или сывороткой крови) клеток крови и соединительной ткани, Г Хаберланд в 1902 г показал возможность культивирования клеток различных тканей растений в простых питательных растворах, Ц Нейберг В 1912 г раскрыл механизм процессов брожения, Л Михаэлис и М Л Ментен в 1913 г разработали кинетику ферментативных реакций, а А Каррел усовершенствовал способ выращивания клеток тканей животных и человека и впервые применил экстракт эмбрионов для ускорения их роста, Г А Надсон и Г С Филлипов в 1925 г доказали мутагенное действие рентгеновских лучей на дрожжи, а в 1937 г Г Кребс открыл цикл трикарбоновых кислот (ЦТК), в 1960 [c.16]

    В процессе гликолиза молекула глюкозо-б-фосфата превращается в две молекулы пирувата (1), последний в анаэробных условиях восстанавливается до лактата (2). Третья важная реакция - окислительное декарбоксилирование пирувата, которое завершается образованием ацетил-КоА(С2-фрагмент), который затем вовлекается в цикл трикарбоновых кислот. Через реакцию транса минирования пируват связан с аминокислотами 4), а при окислении глицерола (метаболит липидов) образуются триозы (3-фосфоглицериновый альдегид или 3-фосфодиоксиацетон), которые далее вовлекаются в процесс гликолиза (5). Еще один путь метаболизма пирувата - его карбоксилирование и превращение в оксалоацетат (6). В дрожжах он способен метаболизировать также с образованием этилового спирта (7). Реакция карбоксилирования позволяет пирувату либо включится в процесс глюнонеогенеза, либо образующийся из него оксалоацетат участвует в пополнении пула промежуточных метаболитов цикла трикарбоновых кислот, если клетка испытывает недостаток АТФ. [c.456]


Смотреть страницы где упоминается термин также Цикл трикарбоновых кислот: [c.90]    [c.90]    [c.239]    [c.64]    [c.639]    [c.665]    [c.85]    [c.326]    [c.338]    [c.470]    [c.516]    [c.405]    [c.414]    [c.636]    [c.549]    [c.93]    [c.343]    [c.392]    [c.414]   
Общая микробиология (1987) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Трикарбоновые кислоты, цик

Трикарбоновых кислот цикл

Цикл трикарбоновых кислот, или цикл



© 2025 chem21.info Реклама на сайте