Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ядерная периодическая система

    В настоящее время радиоактивные изотопы могут быть получены для любых химических элементов периодической системы за счет соответствующих ядерных реакций. Явление искусственной радио-акти (ности открыто в 1934 г. Ирен и Фредериком Жолио-Кюри. [c.659]

    В результате захвата электрона заряд ядра атома уменьшается на единицу и в соответствии с законом смещения получается изотоп, который смещен в периодической системе относительно исходного на одно место с меньшим номером. Одновременно происходи" выделение кванта лучистой энергии в виде характеристического рентгеновского излучения, которое связано с переходом электрона с более удаленных уровней на уровень К. Так, ядерное уравнение перехода в путем К-захвата имеет следующий вид  [c.68]


    Стронций-90 - радиоактивный продукт цепной реакции. В случае его попадания в пищу из почв, расположенных рядом с местами проведения наземных ядерных испытаний, он может нанести организму огромный вред. Он особенно опасен, так как ведет себя в химическом отношении подобно кальцию (эти два элемента находятся в одной группе периодической системы), и, вместо того чтобы выводиться из организма, он накапливается в костях. Учитывая эту и другие опасности радиоактивных осадков, в 1963 году США, СССР и некоторые другае страны заключили соглашение, которое положило конец большинству наземных испытаний ядерного оружия. Однако стронций-90 продолжает выделяться в окружающую среду из радиоактивных остатков от предыдущих ядерных взрывов. [c.330]

    Периодический закон и периодическая система элементов оказали огромное влияние на развитие науки и техники они послужили теоретическим фундаментом направленного поиска и открытия за истекшее столетие 46 новых элементов из 107 известных в настоящее время. Кроме того, закон Д. И. Менделеева послужил толчком к исследованиям строения атома, которые изменили наши представления о законах микромира и привели к практическому воплощению идеи использования ядерной энергии. [c.23]

    Используемое ныне в научной литературе выражение "превращение химических элементов" некорректно. Оно подменяет конкретный объект превращения (атом), неопределенным понятием (химический эле.мент). Недостатком формулировки закона радиоактивных смещений (правильнее превращений ) является то, что она не выделяет подвиды атомов как объект превращения. Она, по-прежнему, "вяжет" их к смещениям в Периодической системе. Возникает принципиальное несоответствие между законом и наглядной его иллюстрацией. Периодическая система химических элементов имеет в основе своей структуры устройство электронной оболочки атомов. Строение ядра имеет здесь лишь опосредованное значение через равенство Ерц. = 1 . Закон же радиоактивных превращений касается исключительно ядерных преобразований и индифферентен (в рамках данных рассмотрений ) к структуре электронной оболочки. И в этом аспекте рассмотрения система атомов идентична системе ядер. Мы как бы на время, игнорируем присутствие электронной оболочки. [c.102]

    Галлий, индий и таллий относятся к главной подгруппе III группы периодической системы элементов (разд. 35.10). В соответствии с номером группы в своих соединениях они проявляют степень окисления -ЬЗ. Возрастание устойчивости низших степеней окисления с ростом атомного номера элемента иллюстрируется на примерах соединений индия(III) (легко восстанавливающихся до металла), а также большей прочности соединений таллия(I) по сравнению с производными таллия(III). Ввиду того что между алюминием и галлием находится скандий — элемент первого переходного периода — вполне можно ожидать, что изменение физических и даже химических свойств этих элементов будет происходить не вполне закономерно. Действительно, обращает на себя внимание очень низкая температура плавления галлия (29,78 °С). Это обусловливает, в частности, его применение в качестве запорной жидкости при измерениях объема газа, а также в качестве теплообменника в ядерных реакторах. Высокая температура кипения (2344°С) позволяет использовать галлий для наполнения высокотемпературных термометров. Свойства галлия и индия часто рассматривают совместно с алюминием. Так, их гидрооксиды растворяются с образованием гидроксокомплексов (опыт I) при более высоких значениях pH, чем остальные М(ОН)з. Гидратированные ионы Мз+ этой [c.590]


    Изучение ядерных реакций открыло путь к практическому использованию внутриядерной энергии. Оказалось, что наибольшая энергия связи нуклонов в ядре (в расчете на один нуклон) отвечает элементам средней части периодической системы. Это означает, что как при распаде ядер тяжелых элементов на более легкие (реакции деления), так и при соединении ядер легких элементов в более тяжелые ядра (реакции термоядерного синтеза) должно выделяться большое количество энергии. [c.95]

    Большое будущее принадлежит работам, отражающим эволюционный подход к развитию периодической системы. Вполне реально установление взаимосвязи глубинных закономерностей, действующих как в мире атомов, так и управляющих миром элементарных частиц. В этом аспекте возрастает значимость исследований о границах периодической системы с точки зрения электронного строения атомов и периодичности ядерных структур. [c.427]

    Решение. Известно, что при испускании а-частицы масса атома уменьшается на четыре единицы, а заряд ядра — на две. В периодической системе элемент смещается на две клетки влево. При испускании -частицы масса атома не изменяется, а заряд ядра увеличивается на единицу. В периодической системе элемент смещается на одну клетку вправо. Это можно представить в виде ядерных реакций  [c.107]

    Периодический закон — это квинтэссенция химической науки, это основа, которая позволяет связать и осмыслить необозримый по объему фактический материал, это неиссякаемый родник новых открытий и обобщений. Периодическая система, — писал Нильс Бор, — это путеводная звезда для исследователей в области химии, физики, минералогии, техники . Он оказал огромное влияние на развитие геологии, геохимии, ядерной физики, астрофизики, космогонии. Периодический закон — это один из тех общих законов природы, которые постоянно обогащают науку, В этом его огромное общенаучное значение. [c.99]

    Важнейшая характеристика атомного ядра — число протонов (заряд ядра). Так как в целом атом не заряжен, то число протонов в ядре определяет число электронов в атоме. Число протонов или число электронов в атоме называется атомным номером, который является порядковым номером элемента в периодической системе элементов Д. И. Менделеева. Совокупность атомов с одинаковым атомным номером называется элементом. В природе найдены элементы с атомными номерами от 1 до 92. После создания ядерных реакторов и сверхмощных ускорителей ученые научились получать новые элементы, не существующие на Земле. Были получены элементы с атомными номерами до 105. [c.20]

    Спонтанным делением называется самопроизвольный распад ядер тяжелых элементов на два (реже на три, четыре) ядра атомов элементов, находящихся в середине периодической системы. Спонтанное деление сопровождается излучением нейтронов. Спонтанному делению подвергаются ядра атомов урана ( и и юрия ( ТЬ и 2ТЬ) и др. Скорость ядерных процессов варьируется в очень больших пределах, от малых долей секунды до миллиарда лет и более. [c.34]

    Заряд атомного ядра по величине совпадает с порядковым номером элемента в периодической системе число электронов равно заряду ядра. Атом в целом нейтрален, т. е. сумма отрицательных зарядов компенсирована положительным зарядом ядра. Размеры атомного ядра (диаметр 10 — 10 м) весьма малы по сравнению с размерами атома (диаметр 10 м), но почти вся его масса сосредоточена в ядре ( 99,97 %). А так как масса является мерой энергии, то в ядре сосредоточена почти вся энергия атома. Плотность ядерного вещества огромна ( 10 кг/м ). Заряд ядра определяет не только общее число электронов, но и электронное строение атомов, а следовательно, их физико-химические свойства. [c.90]

    Глава V. Периодическая система элементов Менделеева. Ядерные реакции. [c.226]

    Помимо получения около 1000 радиоактивных изотопов искусственными ядерными реакциями, с помощью последних были синтезированы недостающие элементы периодической системы с 2 = 43, 61, 85 и 87. С помощью ядерных реакций химия вышла за пределы последнего элемента — урана искусственно получены элементы с порядковыми номерами 93—104. На крупнейших заводских установках разделяются изотопы урана, в атомных реакторах получаются относительно большие количества плутония. Ядерная техника получения элементов с каждым годом расширяет сферу своего практического применения. [c.61]

    Работа Д. И. Менделеева по созданию периодической системы положила начало научно обоснованному методу целенаправленного поиска новых химических элементов. Примерами могут служить многочисленные успехи современной ядерной физики. Только за последние 20 лет в СССР синтезированы элементы с порядковыми номерами 102 — 110. Изучение их свойств, так же как и получение, было бы невозможно без знаний закономерностей взаимосвязи между химическими элементами. [c.59]


    Отображением этого закона является периодическая система элементов, которая позволяет единым взором охватить всю их совокупность, уяснить связь между ними, возможность превращения одних элементов в другие. Многие открытия в атомной и ядерной физике, астрофизике, химии и геологии были сделаны исходя из периодического закона и на его основании. Вместе с тем дальнейшее развитие физики и химии обогатило понимание периодического закона и структуры самой периодической системы элементов. Теперь мы знаем, что причиной пена [c.113]

    Первые экспериментальные структурные данные были получены в работах Э. Резерфорда (1871 —1937) по рассеянию а-частиц тонкими металлическими фольгами. Характер этого рассеяния мог быть объяснен только в предположении, что практически вся масса атома сосредоточена в положительно заряженном ядре. В 1911 г. Резерфорд предложил планетарную модель строения атома вокруг массивного и маленького положительно заряженного ядра (его объем составляет 10 объема атома) по некоторым орбитам вращаются электроны, нейтрализующие ядерный заряд. Из этих же опытов мог быть вычислен и заряд ядра. Так, в экспериментах с платиновой, серебряной и медной фольгами для зарядов ядер были получены значения (в единицах заряда электрона) 77,4 46,3 и 29,3 соответственно. Порядковые номера названных элементов в периодической системе 78, 47 и 29. Ясно, что заряд ядра равен атомному номеру элемента. Этой же величине должно равняться число электронов в атоме вследствие электронейтральности последнего. [c.45]

    При записи радиоактивного распада, а также уравнений ядерных реакций следует учитывать следующие правила сумма массовых чисел всех ядер и частиц в левой части уравнения, равна сумме массовых чисел ядер и частиц в правой части, алгебраическая сумма зарядов в левой части равняется алгебраической сумме зарядов в правой части. Отсюда вытекает правило сдвига Содди — Фаянса для радиоактивного распада. Если изотоп испускает а-частицу, то при этом образуется изотоп с массовым числом на 4 единицы меньше и номером в периодической системе на две единицы меньше, чем у исходного изотопа. Если изотоп испускает р-частицу, то при этом образуется изотоп с тем же массовым числом, но с номером в периодической системе на единицу большим, чем у исходного изотопа. При радиоактивном превращении, которое сопровождается захватом электрона ядром (так называемый /С-захват), массовое число образующегося изотопа не меняется, а номер в периодической системе становится на единицу меньше, чем у исходного изотопа. Массовое число атома указывается слева вверху относительно символа элемента, а заряд — внизу слева, например  [c.221]

    Одним из фундаментальных законов природы, известных каждому образованному человеку, является периодический закон химических элементов, открытый Д. И. Менделеевым в 1869 г. Этот закон и построенная Менделеевым периодическая система оказали огромное влияние на развитие науки и техники. Достаточно напомнить, что закон Менделеева послужил толчком к исследованиям строения атома, которые в конечном счете изменили наши представления о законах микромира и привели к практическому воплощению идеи использования ядерной энергии. [c.7]

    Величина ионного радиуса связана с положением элемента в периодической системе Д. И. Менделеева. У элементов одного и того же периода (см. справа) радиус катионов. .. радиуса анионов, что обусловлено избыточным ядерным зарядом, сжимающим внешние орбитали у. ...  [c.186]

    III группы 6-го периода периодической системы элементов Д, И. Менделеева, относится к семейству лантаноидов, п. и. 63, ат, м. 151,96. Е. открыт в 1901 г. Демарсе. Благодаря большому сечению захвата тепловых электронов Е. применяют в ядерных реакторах. В соединениях Е. бывает двух- и трехвалентным. Соли Е. имеют розовую или бледно-желтую окраску. [c.93]

    КИ, периодический закон и основанная па нем периодическая система элементов Д. И. Менделеева. Главной задачей Н. х. является установление строения химических элементов, изучение состава и свойств соединений в связи со строением, установление строения молекул. Другая важнейшая задача Н. х.— разработка и научное обоснование способов создания новых материалов с нужными для современной техники свойствами. Одним из основных направлений Н. х. в XX в. явилось изучение химии комплексных соединений, а также изучение соединений, в которых атомы проявляют [ алентность, не подчиняющуюся классическим представлениям,— гидридов, карбидов, нитридов, боридов, карбонилов и др. В Н. X. широко применяются два основных метода химического исследования — синтез и анализ. Всего к середине XX в. было изучено около 00 тыс. неорганических соединений. Новый этап в развитии И. х. наметился в последние годы в связи с развитием ядерных исследований, новой техники, требующей новых материалов с нужными для современной техники свойствами. [c.173]

    ПЛУТОНИЙ (Plutonium, от названия планеты Плутон) Ри — радиоактивный химический элемент семейства актиноидов 1П группы 7-го периода периодической системы элементов Д. Н. Менделеева, п. н. 94, массовое число наиболее долгоживущего изотопа 244, стабильных изотопов не имеет. Впервые П. получен в 1940 г. Г. Сиборгом с сотрудниками. Наиболее важен изотоп зврц = 24 ООО лет), который может использоваться для получения ядерной энергии и в атомных бомбах как взрывчатое вещество. П.— первый искусственный элемент, который начали получать в промышленных масштабах. Известно несколько оксидов П., а также большое количество интерметаллических соединений, сплавов. Элементарный П.— металл серебристо-белого цвета, т. пл. 637° С. П. весьма токсичен. При попадании в организм П. задерживается в нем, концентрируясь в костях, вызывает тяжелые нарушения деятельности организма. [c.194]

    ПОЛОНИЙ (Polonium, назван в честь Польши — родины М. Склодовской-Кюри) Ро — радиоактивный химический элемент VI группы 6-го периода периодической системы элементов Д. И. Менделеева, п. Н.84, массовое число наиболее долгоживущего изотопа 209. Известны 24 изотопа и ядерных изомера. П. открыт в урановой руде в 1898 г. П. Кюри и М. Склодовской-Кюри. Природный изотоп 21оро (Т,д=138 дней) — а-излуча-тель. По химическим свойствам сходен с теллуром и висмутом. П.— металл серебристо-белого цвета, т. пл. 254° С. В соединениях П. четырехвалентен. Металлический П. легко растворяется в концентрированной HNO3 с выделением оксидов азота. С кислородом реагирует при нагревании, с водородом и азотом не реагирует. П. применяется для изготовления нейтронных источников, для изучения радиационно-химических процессов под действием а-излу-чения, действия а-излучения на живые организмы, для изготовления электродных сплавов и др. [c.200]

    ПРОМЕТИЙ (Prometium, назван в честь Прометея) Рт — радиоактивный химический элемент III группы 6-го периода периодической системы элементов Д. И. Менделеева, п. н. 61, массовое число наиболее долгоживущего изотопа 145, относится к группе лантаноидов. Впервые изотоп i Pm (T i/2= ei) выделен в 1947 г. Дж. Маринским и Л. Гленденином из смеси радиоактивных изотопов элементов, образующихся при распаде урана в ядерном реакторе. В природе П. не найден. Изотоп i Pm — радиоактивное отравляющее вещество, образующееся при взрыве атомной бомбы. [c.204]

    ТРАНСУРАНОВЫЕ ЭЛЕМЕНТЫ (за-урановые элементы) — радиоактивные химические элементы, расположенные вслед за ураном в конце периодической системы элементов Д. И. Менделеева. Т. э. имеют п. н. 93—103, принадлежат к группе актиноидов. Все изотопы Т. э. обладают периодами полураспада, значительно меньшими, чем возраст Земли, поэтому они отсутствуют в природе и получаются искусственно посредством различных ядерных реакций. Исследование физических свойств Т. э. показало, что они аналоги лантаноидов. Из всех Т. э. наибольшее значение имеет зврц как ядерное топливо, используется в изотопных источниках тока, применяемых для питания радиоаппаратуры на спутниках и др. [c.253]

    IV группы 5-го периода периодической системы элементов Д. И. Менделеева, п. н. 40, ат. м. 91,22. Открыт Ц. в 1789,г. М, Клапротом. В состав природного Ц. входят пять стабильных изотопов, известны 14 радиоактивных изотопов. В природе распространепы главным образом минералы циркон ZrSi04 и бадде-леит ZrOa. Все природные минералы Ц. имеют примесь гафния. Ц.— металл серебристо-белого цвета с характерным блеском, т. пл. 1852° С. Химически чистый металл исключительно ковок и пластичен. В соединениях проявляет степень окисления -f-4. Ц, очень устойчив против коррозии в химически агрессивных средах. Ц., очищенный от гафния, находит применение как конструкционный материал в ядерной энергетике, электровакуумной технике (как геттер), в металлургии как легирующий металл, в химическом машиностроении. Из диоксида Ц. и циркона изготовляют огнеупорные материалы, керамику, эмали и особые сорта стекла. [c.285]

    В табл. 10 приведены ц, п и I =ц/(е1у) для ряда двухатомных молекул. Соотношение I=ц/ (ег,) для молекул, образованных атомами одного периода, тем выше, чем дальше расположены атомы друг от друга в периодической системе элементов. Наиболее высокая полярность достигается у галогенидов щелочных металлов, но и здесь, согласно критерию Полинга, полного разделения зарядов не достигается, величина [лДе ) все же меньше единиць Для молекулы НР по этому критерию 1 = 40%. Для оценки степени ионности связи предложены и другие критерии, в частности критерий Горди, основанный на измерении констант ядерной квадрупольной связи.  [c.134]

    Тот же эффект используется и в случае, когда источником ядерной энергии служат ядра наиболее легких атомных ядер, соединяющихся 1в более тяжелое ядро. При таких ядерных реакциях выделяется особенно много энергии потому, что дефект масс тут наибольший (энергия связи для атомных ядер с 2>5 составляет 7,4—8,8 МэВ). Действительно, кривая дефектов масс показывает, что хотя атомные ядра всех элементов образуются с выделением энергии, больше всего энергии выделяется ири образовании элементов средней части периодической системы. Поэтому можно использовать атомную энергию, выделяющуюся при образавании более тяжелых атомных ядер из самых легких, а также при распаде атомных ядер тяжелых элементов. В первом случае происходит ядерный синтез, во втором — процесс деления тяжелых атомных ядер. [c.211]

    Искусственно получаемые химцческие элементы образуются в ядерных реакциях (I. с. 113). В таблице периодической системы химических элементов Д. И. Менделеева они помещены в соответствии с электронным строением их атомов. [c.66]


Смотреть страницы где упоминается термин Ядерная периодическая система: [c.201]    [c.99]    [c.103]    [c.76]    [c.54]    [c.108]    [c.114]    [c.169]    [c.239]    [c.248]    [c.252]    [c.13]    [c.51]    [c.22]    [c.577]   
Возможности химии сегодня и завтра (1992) -- [ c.201 ]




ПОИСК





Смотрите так же термины и статьи:

Периодическая система



© 2025 chem21.info Реклама на сайте