Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сплавы коррозия в растворах кислот

    Облучение, облегчая протекание катодного процесса, ускоряет коррозию железа в два-четыре раза и усиливает коррозию меди и ее сплавов в растворах кислот. [c.371]

    Легирование серой и фосфором заметно интенсифицирует растворение в кислотах. Эги элементы образуют соединения с низким водородным перенапряжением к тому же они уменьшают анодную поляризацию, так что коррозия железа увеличивается вследствие ускорения и катодного, и анодного процессов. Скорости коррозии сплавов в растворах кислот представлены в табл. 6.4. [c.125]


    Скорость коррозии железоуглеродистых сплавов в растворах кислот-окислителей зависит от окислительной способности этих кислот. Растворы азотной кислоты,. содержащие менее 30% [c.103]

    Практически наиболее часто разрушение металлов протекает с водородной или кислородной деполяризацией. В первом случае коррозия возможна при условии, когда равновесный потенциал корродирующего металла отрицательнее равновесного потенциала водородного электрода в данных условиях. Коррозии с водородной деполяризацией подвергаются многие металлы и сплавы в растворах кислот, а некоторые металлы и сплавы с весьма отрицательными потенциалами — в нейтральных и даже щелочных растворах. [c.13]

    Некоторые металлы и сплавы подвергаются значительному разрушению под действием растворов кислот и щелочей, применяемых при очистке газа. Щелочи низкой и средней концентрации не вызывают коррозии обыкновенной стали. При повышении концентрации щелочи начинается выщелачивание с поверхности металла сульфидов, силикатов и окислов. Это явление приводит к снижению механической прочности и жаростойкости металлов. На детали, находящиеся под повышенными механическими нагрузками, например вращающиеся части центробежных насосов, коррозионное действие щелочей усиливается. [c.32]

    Катодная реакция с выделением водорода относится к наиболее частым случаям коррозии большинства металлов и сплавов под действием кислот, а также некоторых металлов с весьма отрицательными потенциалами (например, магния и его сплавов) н нейтральных растворах электролитов. [c.39]

    Медь и многие сплавы на ее основе стойки только в чистой кислоте при нормальной температуре, но их скорость коррозии может увеличиться в десятки раз при аэрировании нли загрязнении раствора окислителями и повышении температуры, Из сплавов на основе меди несколько лучшей коррозионной стойкостью обладают оловянистые бронзы. Скорость коррозии молибдена, вольфрама, ниобия в растворах кислоты невелика, возможно охрупчивание ниобия а концентрированной кислоте ири высокой температуре. [c.851]

    Межкристаллитной коррозии могут подвергаться и некоторые сплавы никеля с молибденом и хромом — инконель и ха-стеллой. Эти сплавы используют в химической промышленности для изготовления деталей аппаратуры, работающих в особо агрессивных средах (кипящие концентрированные растворы кислот и щелочей). Склонность таких сплавов к межкристаллитной коррозии, как и в рассмотренных выше случаях, устраняется при помощи соответствующей термообработки. [c.448]


    Исследовано коррозионно-электрохимическое поведение сплавов железа с алюминием в растворах кислот и солей в присутствии стимуляторов и ингибиторов коррозии. Обнаружено, что с увеличением концентрации алюминия в сплаве коэффициент его селективного растворения, а также энергия активации анодного растворения возрастают. Установлено, что повышение температуры раствора способствует уменьшению поляризационного сопротивления, повышению коэффициента селективности, а также [c.26]

    Соляная кислота по отношению к железу является неокислительной, и коррозионный процесс в ней протекает с образованием растворимых продуктов коррозии, не обладающих защитными свойствами. Скорость коррозии с повыщением концентрации возрастает по экспоненциальной зависимости. На рис. 6.1, 6.2 показаны зависимости скорости растворения железоуглеродистых сплавов в растворах соляной кислоты. [c.75]

    Стали с особыми свойствами. К этой группе относятся нержавеющие, жаростойкие, жаропрочные, магнитные и иекото[)ые другие стали. Нержавеющие стали устойчивт, против коррозии в атмосфере, влаге и в растворах кислот, жаростойкие — в коррозионно-активных средах при высоких температурах. Жаропрочные стали сохраняют высокие механические свойства при нагревании до значительных температур, что важно при изготовлении лопаток газовых турбин, деталей реактивных двигателей и ракетных установок. Важнейшие легирующие элементы жаропрочных стале это хром (15—20%), никель (8—15%), вольфрам. Жаропрочные ста.ли принадлежат к аустеннтиым сплавам. [c.686]

    Металлы и их сплавы являются наиболее важными современными конструкционными материалами. Всюду, где эксплуатируются металлические конструкции, есть вещества, которые, взаимодействуя с металлами, постепенно их разрушают ржавление металлических конструкций (железных кровель зданий, стальных мостов, станков и оборудования цехов) в атмосфере ржавление наружной металлической обшивки судов в речной и морской воде разрушение металлических баков и аппаратов растворами кислот, солей и щелочей на химических и других заводах ржавление стальных трубопроводов в земле окисление металлов при их нагревании и т. п. У большинства металлов в условиях их эксплуатации более устойчивым является окисленное (ионное) состояние, в которое они переходят в результате коррозии. Слово коррозия происходит от латинского согго(1еге , что означает разъедать . [c.8]

    Медь и медные сплавы обладают слабой пассивируемостью. Она достаточно устойчива в неокисляющнх кислотах при отсутствии доступа кислорода в серной кислоте пизких концентраций, соляной кислоте низких и средних концентраций, уксусной, лимонной кислотах и др. Вследствие toi o, что растворы кислот практически всегда содержат кислород, медь в кислотах подвержена коррозии. [c.247]

    При температуре 20—50 - С кислота в парах диссоциирует па НР и и ме таллы подвергаются воздействию фтористого водорода. В концентрированных растворах кислоты при нормальной температуре низкая коррозионная стойкость циркония объясняется присутствием в растворе иопов фтора. Некоторые соли кремневой кислоты используются как ингибиторы коррозии никеля и его сплавов в растворах хлор-новатистонатриевой соли. [c.827]

    Серебрение или плакировка серебром применяются для защиты стального оборудования от коррозии. Однако даже небольшое нарушение сплошности покрытия может вызвать интенсивную коррозию основного металла. В растворах кислоты любой концентрации при высоких температурах стойки медноникелевые сплавы с содержанием никеля 20— 30%, стали Х23Н28МЗДЗТ, Х20Н28М4Д, платина, золото. [c.828]

    Никельмедные сплавы стойки в растворах кислоты любой концентрации. При аэрировании растворов скорость коррозии тиx сплавов увеличивается [c.831]

    Испытания металлических материалов проводились в плаве состава ЗЬСЬ —80%. ЗЬСЬ —207о- Треххлористая сурьма легко гидролизуется с образованием хлористого антимонила и соляной кислоты. поэтому алюминий и его сплавы в растворах солн подвержены точечной коррозии. [c.846]

    Имеются сведения о высокой коррозионной стойкости никельмедных сплавов в кипящих растворах кислоты. Скорость коррозии этих сплавов при аэрировании растворов возрастает с увеличением концентрации кислоты до 50%. а затем несколько снижается, по обычно не п )евышает 0.8 /(м ч). [c.848]

    В растворе, насыщенном H S и содержащем 5 % Na l и 0,1 % уксусной кислоты (имитация кислой среды газовых скважин), разрушение сплава зависит от температуры и скорости равномерной коррозии, которая преобладает в этих условиях и приводит к образованию водорода. При комнатной температуре разрушение вследствие водородного растрескивания (называемого иногда также сульфидным растрескиванием) протекает обычно только в том случае, если обработанные холодным способом сплавы были подвергнуты последующей термической обработке (состарены на заводе-изготовителе). Старение сплавов, увеличивающее их прочность, может приводить также к усилению равномерной коррозии в кислотах. При этом количество выделяющегося водорода становится достаточным, чтобы вызвать растрескивание. При повышенной температуре разрушения этого типа обычно уменьшаются (меньше водорода проникает в металл и больше удаляется в виде газа). Однако в области повышенных температур водородное растрескивание может смениться КРН, которое связано с присутствием хлоридов. В этом случае контакт сплавов с более активными металлами предотвращает растрескивание (протекторная защита). [c.371]


    Большие затруднения возникают при электролитическом по крытии металлами изделий из цинкового сплава ( 4% А1), изго тавливаемых методом литья под давлением. Поверхность такой сплава имеет поры, в которых могут задерживаться растворь (кислоты, щелочи) после химической и электрохимической подго товки, вода после промывки, а также электролит, в котором про изводится покрытие. В результате коррозии цинка под действием жидкости, оставшейся в порах, образуются пузырчатые вздутия в покрытии, которое со временем отслаивается. [c.428]

    Никелевые сплавы (например, 12Х25Н60В15) устойчивы к воздействию горячих и холодных щелочей, разбавленных окисляющих органических и неорганических кислот, а также к воздействию атмосферы [81]. Аэрация и повышение температуры увеличивают скорость коррозии никелевых сплавов. В растворах азотной кислоты никель имеет сравнительно низкую коррозионную стойкость. [c.17]

    Сплавы Ni—Сг обладают высокой стойкостью к окислению и общей коррозии, особенно при содержании Сг менее 20%. В то же время в присутствии водорода характер разрушения бинарного сплава Ni—20% Сг изменяется от вязкого к межкристаллитному и наблюдается существенная потеря пластичности [109, 259, 260]. Энергия дефектов упаковки (ЭДУ) в этом сплаве значительно меньше чем в Ni [259, 261], что свидетельствует, возможно, о более планарном скольжении. К числу промыщленных сплавов, близких к Ni—20% Сг, относятся Инконель 625 и Инконель 600 (последний имеет более высокую ЭДУ, что объясняется пониженным содержанием Сг и присутствием значительного количества Fe). Оба сплава обладают высокой стойкостью к КР в хлоридных растворах при температурах ниже 375 К [262], но при более высоких температурах растрескивание все же происходит [241, 262— 264]. Сплав Инконель 600, кроме того, сравнительно восприимчив к растрескиванию во фторидных средах [241], а также в политио-новой кислоте (НгЗ Ое, где х=3, 4 или 5) и других сульфид-со-держащих средах [241, 262]. Однако следует отметить, что в одном из обзоров [241] разрушение этого сплава в политионовой кислоте было классифицировано как стимулированная напряжением межкристаллитная коррозия , а не как обычное коррозионное растрескивание. [c.111]

    На кафедре химии Омского педагогического института на основе отходов и полупродуктов нефтехимии разработаны ингибиторы кислотной коррозии и наводороживания черных и ряда цветных металлов серии ОНИ (полимеры дигидрохи-нолина), СОД (полимерные соли пиридиния) и ИН (продукты аминирования альдегидов). Установлено, что ингибиторы серии ОНИ и СОД при содержании до 3,5 г/л эффективно защищают железо и его сплавы в растворах соляной и серной кислот в широком интервале концентраций и температур, при этом СКЗ их достигает 90...99 %, увеличиваясь с повышением температуры. Ингибиторы серии ИН показали высокое защитное действие в растворе соляной кислоты и слабокислых растворов, содержащих нефтепродукты [7]. [c.237]

    При травлении нержавеющих сталей, ннкельхромовых сплавов в растворах на основе азотной кислоты ингибиторы почти не применяются, так как они тормозят растворение окалины и соответственно увеличивают время травления. Однако в некоторых случаях при травлении в этих растворах наблюдается структурная коррозия, выпадение зерен, питтинг. Для предотвращения этих нежелательных явлений иногда могут быть использованы ингибиторы. [c.111]

    Оксид висмута В гОз предложено использовать в качестве наполнителя антикоррозионных покрытий на поверхности металлов и сплавов. Типичный состав для осаждения на поверхности стали включал ацетофенон, формальдегид и олеиновую кислоту с добавлением NH4OH и В1гОз. Длительное нафевание стальных изделий в горячих растворах кислот подтвердило защитные свойства покрытий в отношении коррозии [479]. [c.318]

    Винная кислота разрушает пассивную пленку на кремнистых чугунах, поэтому коррозионная стойкость их в этой среде при повышении температуры резко снижается. Алюминнево-кремнистые и алюминиево-марганцовистые сплавы по коррозионной стойкости близки к алюминию, но нх скорость коррозии увеличивается при загрязнении кислоты солями тяжелых металлов. Никель и многие сплавы на его основе стойки в растворах кислоты до [c.815]

    При аэрировании растворов кислоты коррозионная стойкость многих металлов снижается, например, скорость коррозии меди возрастает в 3—4 раза. В растворах кислоты при нормальной температуре могут применяться безоловянистые бронзы Бр. А7. Бр. АЖ 9-4, Бр. ЛЖИ 10-4-4. титан и сплавы на основе никеля (типа хастелоев ЭП496, ЭИ460. ЭИ461). [c.831]

    Муравьиная кислота, является восстановителем, поэтому иа хромистых сталях, кремнистых чугунах не образуется пассивной плеики н при повышенных температурах этн сплавы нестойки. Тнтаи стоек в кислоте любой концентрации при температуре до 60° С. В кипящей кислоте концентраций >25% он реагирует с большой скоростью. При температурах >6№ С н концеитрации кислоты 25—50% на коррозионную стойкость титана влияют многие факторы (ничтожные прнмесн, сплошность пассивной пленки). Прн более высоких температурах пассивная пленка разрушается и скорость коррозии титана возрастает. Свннец стоек в растворах кислоты, но нестоек в щелочных растворах ее солей. Платина и серебро стойки в растворах кислоты без доступа кислорода. Имеются Сведения о коррозионном растрескива ИНН хромистых сталей в разбавленных растворах кислоты. Для изготовления деталей арматуры применяются безоловянистые бронзы Бр- А7, Бр. АЖ 9-4. Бр. АЖН 10-4-4. Высокой коррозионной стойкостью обла дают хромониксльмо--лнбденовые и кобальтовые сплавы типа стеллитов. [c.832]

    Никельхромовые и нн-кельхроможелезные сплавы тнпа ннконеля стойки в растворах кислоты с ограниченным доступом воздуха, загрязнение растворов солями железа практически не снижает их коррозионной стойкости, но при высоких температурах коррозия также возрастает. [c.851]


Смотреть страницы где упоминается термин Сплавы коррозия в растворах кислот: [c.287]    [c.827]    [c.841]    [c.848]    [c.851]    [c.180]    [c.180]    [c.26]    [c.173]    [c.827]    [c.831]    [c.841]    [c.848]    [c.851]   
Коррозия и защита от коррозии (1966) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Коррозия в кислотах

коррозия в растворах



© 2024 chem21.info Реклама на сайте