Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сплавы старение

    Так, при цементации на поверхности железа растет слой карбида, а при дальнейшем отжиге этот слой исчезает в результате растворения углерода в железе. Реактивная диффузия осуществляется при выпадении химических соединений в сплавах (старение) или при растворении этих соединений. [c.354]

    Газовая печная среда, образующаяся при горении природного газа в рабочей камере печи, имеет высокое парциальное давление водяных паров. Химический ее состав, температура и давление зависят от режима сжигания. При неконтролируемой среде возможно протекание ряда сопутствующих физических и химических процессов, которые отрицательно влияют на качество получаемых продуктов. Например, ири выплавке алюминия и его сплавов происходит насыщение расплава газами, которое ведет к образованию газовых раковин, резко выраженной пористости, появлению неметаллических включений, являющихся концентраторами напряжения, снижающими прочность и предел усталости, к снижению пластических свойств металла, к образованию дефектов типа окисных плен, име ющих большую твердость и нулевую пластичность, к появлению пузырей при окончательной термообработке готовых изделий, что ухудшает механические свойства при закалке и старении сплавов. [c.76]


    Гораздо более вероятно коррозионное растрескивание высокопрочных сплавов (например, нагартованных сталей и латуней), нежели материалов низкой прочности. Сплавы железа (стали и чугуна), предел прочности которых ниже 300 МПа, почти не подвержены коррозионному растрескиванию. Упрочняющая термообработка (например, дисперсионное твердение, старение), способствующая образованию грубодисперсной структуры, увеличивает склонность материала к коррозионному растрескиванию. [c.452]

    Деформируемые алюминиевые сплавы, упрочняемые термической обработкой, легируются элементами, обладающими ограниченной растворимостью в алюминии в твердом состоянии, уменьшающейся при понижении температуры. Термическая обработка деформируемых алюминиевых сплавов заключается в закалке с последующим старением. Старение может быть естественным при комнатной температуре или искусственным при 150— 200°С. Закалка проводится нагревом до температуры, обеспечивающей полное растворение легирующего элемента и образование однородного твердого раствора с последующим охлаждением в воде. В результате закалки фиксируется при комнатной температуре пересыщенный твердый раствор, однако прочность сплава непосредственно после закалки остается низкой. В результате старения закаленного сплава при комнатной или [c.47]

    Механические свойства литейных алюминиевых сплавов могут быть существенно улучшены модифицированием в жидком состоянии. Так, модифицирование силумина с содержанием 13% кремния приводит к повышению предела прочности от 140 до 180 МН/м и удлинения от 3 до 8%. При более высоких требованиях к прочностным свойствам применяют специальные силумины с добавками меди, марганца, магния, с термической обработкой закалкой с последующим старением. Однако механические свойства литых сплавов значительно уступают термически упрочняемым сплавам. Поэтому применение литых сплавов для нагруженных деталей целесообразно лишь в случае сложной формы изделия или выигрыша в весе, в остальных случаях предпочтительнее применение кованых, более прочных сплавов. [c.53]

    Коррозионную стойкость оценивают по специальной шкале Единой системы защиты от коррозии и старения. Металлы, сплавы , имекзщей десять баллов. Первым баллом оцениваются материалы со скоростью коррозии 1—5 мм/год, десятым баллом — со скоростью коррозии 0,00015 мм/год. Коррозионная проницаемость материалов учитывается при конструировании оборудования, в частности увеличивают стенки аппарата на коррозионный износ например, колонны из углеродистой стали изготовляют с прибавкой толщины стенок на 4—6 мм. Кроме того, коррозионная проницаемость принимается в расчет при определении межремонтного периода оборудования. [c.282]


    Отечественный р-титановый сплав ВТ 15 содержит 3—4% А1, 7—8% Мо и 10—11,5% Сг. В термически упрочненном состоянии (закалка+старение) он имеет 0в= 1300—1500 МН/м2, 002- 1 180 МН/м , 6 = 3—6% [41]. [c.70]

    Чистый алюминий стоек к коррозионному растрескиванию под напряжением. Если сплав типа дуралюмина находится под растягивающим напряжением в присутствии влаги, он может растрескиваться вдоль границ зерен. Как отмечалось выше, сенсибилизация сплава термической обработкой увеличивает его склонность к такому разрушению. При. старении сплава при 160— 205 °С максимальная склонность к коррозионному растрескиванию под напряжением возникает до того, как прочность на разрыв -достигает наибольшего значения [28]. Следовательно, при проведении термической обработки лучше стремиться к тому, чтобы сплав был несколько излишне состарен, чем состарен недостаточно. [c.353]

    Топохимические реакции могут протекать и без участия газовой фазы. К числу подобных реакций относятся многие важные процессы, протекающие в металлах и сплавах, такие как рекристаллизация, полиморфные превращения, в частности мартенситные, старение и др. [c.387]

    Бериллий, образуя сплавы со многими металлами, придает им твердость, прочность, жаростойкость и коррозионную устойчивость. Сплавы меди с 1—3% Ве, называемые бериллиевыми бронзами, при старении становятся прочнее. Они в 2 раза тверже нержавеющей стали, не искрят при ударе, в 2,5 раза быстрее, чем сталь, проводят звук. Поэтому из них делают пресс-формы, ударные наконечники шахтерских молотков, гонги, музыкальные трубы, подшипники, пружины, шестерни. Сталь с добавкой 1% Ве сохраняет упругость при температурах красного каления и называется рессорной сталью. Легкие, прочные и жаростойкие спл шы бериллия на основе алюминия, магния или титана применяют в авиа- и ракетостроении. [c.400]

    К числу топохимических реакций можно отнести такие важные процессы, происходящие в твердом состоянии в металлах и сплавах, как рекристаллизация, старение, полиморфные превращения, среди которых особое место занимают мартенситные. [c.281]

    Алюминиевые сплавы, содержащие около А% меди (дюраль), высокими прочностными характеристиками обязаны выделению по границам зерен СиАЬ, образующегося во время особой обработки сплавов — старения . Однако образованию СиАЬ сопутствует обеднение границ зерен сплава медью. Области, обедненные медью, характеризуются пониженной коррозионной стойкостью, в результате чего в агрессивных средах начинается быстрое разрушение сплава вдоль границ зерен. Для уменьшения склонности дюрали к МКК применяют специальную термообработку (нагревание до температуры 490°С с закалкой в воду) и последующее старение при комнатной температуре. Уменьшение восприимчивости к МКК сопровождается снижением прочности сплава. [c.448]

    Взаимная растворимость металлов А В часто увеличивается с ростом температуры. Если быстро охладить однофазный твердый раствор А — В, равновесный при некоторой температуре Г > Гкомн, то образуется пересыщенный твердый раствор. Выдержка закаленного сплава при комнатной или повышенной температуре 7 2( комн< 2<7 1) приводит к изменению его механических и физических свойств вследствие структурных изменений. Этот процесс называется старением и широко используется как один из весьма эффективных способов обработки сплавов. Старение при комнатной температуре называется естественным, прн повышенной — искусственным. [c.347]

    Для гстерогенных сплавов двухкратная термическая обработка аустенизация и стабилизирующий отжиг с двухступенчатым старением при 900 °С в течение 84 ч и при 850 °С в течение 154 ч приводят к дисперсионному твердению из-за вьщеления избыточных фаз. [c.265]

    Межкристаллитная коррозия алюминиевомагниевых сплавов также сопровождается образованием на границах зерен второй фазы. Анодом при старении алюминиевомагниевого сплава является интерметаллическое соединение Al2Mgз, которое располагается по границам зерен и разрушение которого вызывает межкристаллитное разрушение сплава. [c.170]

    Легирование алюминия магнием увеличивает склонность сплава к КРН, особенно, если содержание Mg превышает 4,5 %. Для ослабления воздействия, по-видимому, необходимо проводить медленное охлаждение (50 °С/ч) сплава от температуры гомогенизации, чтобы произошла коагуляция Р-фазы (AlgMga) последний процесс ускоряется при введении в сплав 0,2 % Сг [29]. Эделеану [30] показал, что катодная защита приостанавливает рост трещин, которые уже возникли в сплаве при погружении в 3 % раствор Na l. При старении сплава при низких температурах максимальная склонность к КРН отмечалась перед тем, как была достигнута наивысшая твердость. Эти данные аналогичны приведенным выше для дуралюмина. Поэтому Эделеану предположил, что склонный к КРН металл вдоль границ зерен не является равновесной р-фазой, ответственной за твердость сплава. По его мнению, склонность к КРН в области границ зерен связана с сегрегацией атомов магния, и этот процесс предшествует образованию интерметаллического соединения. По мере старения склонность к КРН уменьшается, так как выделение Р-фазы в области границ зерен идет с потреблением металла, содержащего сегрегированные атомы магния. Сходным образом, вероятно, можно объяснить поведение сплавов алюминия-с медью. [c.353]


    Коллоидная стабильность смазок лишь отчасти связана с синерезисом, поэтому эти свойства нельзя отождествлять. Чем выше загуш аюш ая способность загустителя и чем больше его в смазке, тем лучше связана в ней жидкая фаза. Высокой коллоидной стабильностью при хранении отличаются углеводородные смазки — гомогенные сплавы минеральных масел с твердыми углеводородами (церезином и парафином), распределенными в смазках в виде тонких, мономолекулярных слоев — кристаллов (см. рис. 12. 1, ж). мазки, загуш енные мылами, менее стабильны, так как структурный каркас не так плотен, а кристаллическая решетка мыл значительно менее масло- мка, чем кристаллическая решетка углеводородов механически задерживаемого масла в каркасе мыл относительно больше, а удерживается оно хуже. Кроме того, мыльные смазки больше подвержены процессам старения, следствием которых являются структурные изменения и связанное с ними выделение масла. [c.662]

    Основные элементы, которыми легируют деформируемые алюминиевые сплавы для обеспечения их упрочнения при термической обработке — медь, кремний, магний, цинк. В некоторые сплавы добавляют литий, церий, кадмий, цирконий, хром и другие элементы. К наиболее важным и распространенным сплавам, упрочняемым закалкой с последующим старением, относятся сплавы систем А1—Си—Mg типа дюралюминий, А1—Мд—51, ави-аль А1—2п—Mg—Си (высокопрочные сплавы Ов бОО— 700 МН/м ), А1—М —2п (самозакаливающиеся свари--ваемые сплавы, сгв=400—450 MH/м ), не требующие термической обработки после сварки, А1—Си—Сс1— (жаропрочные сплавы, Ов = 360—400 МН/м ) после 1000 ч выдержки при температуре 180°С. К высокопрочным сплавам относятся сплавы В93, В95, В96 системы А1—2п—Mg—Си, сплав ВАД23 системы А1—Си—Мп— С(1 и, частично, в зависимости от применяемой термической обработки и вида полуфабриката, сплавы. Д16, Д19, системы А1—Си—Mg, сплав АК8 системы А1—Си—Mg—51. Наибольшей прочностью при комнатной температуре обладают сплавы В93, В95, В96 и ВАД23. Сплавы Д16 и Д19 обладают меньщей прочностью при комнатной температуре, чем сплавы В93, В96, В95. Однако их преимущество заключается в большей жаропрочности и меньщей чувствительности к коррозии. Сплав ВАД23 сохраняет относительно высокие прочностные характеристики после длительных нагревов до 160— 180°С. Исходя из характеристик алюминиевых сплавов следует применять сплавы В93, В95, В96 для конструкций, работающих до температуры 100°С, при этом в конструкции должны отсутствовать концентраторы напряжений, расположенные в плоскости, перпендикулярной к действию силы. Для нагружения конструкций, работаю- [c.49]

    Сплавы типа дуралюмина (например, марки 2017 и 2024) содержат несколько процентов меди и, вследствие выделения uAla вдоль плоскостей скольжения и границ зерен, обладают повышенной прочностью. Выше температуры гомогенизации (приблизительно 480 °С) медь находится в твердом растворе. При закалке этот раствор сохраняется. При комнатной температуре происходит медленное выделение uAlj, и сплав постепенно упрочняется. Если закалка сплава от температур, отвечающих твердому раствору, производится в кипящей воде или, если после закалки его нагреть выше 120 °С (искусственное старение), то uAla выделяется преимущественно вдоль границ зерен. В результате участки, примыкающие к интерметаллическому соединению, обедняются медью. При этом границы зерен становятся анодами по отношению к зернам, а сплав приобретает склонность к межкристаллитной коррозии. Продолжительный нагрев восстанавливает однородность состава сплава в зернах и на границах зерен и устраняет склонность к коррозии такого типа. Однако это сопровождается некоторым ухудшением механических свойств. На практике сплав закаляют примерно от 490 °С, а затем следует старение при комнатной температуре. [c.352]

    Выбор высокопрочных алюминиевых сплавов весьма велик (некоторые из них приведены в табл. 20.1). Соотношение компонентов и режим термической обработки этих сплавов обычно выбирают с таким расчетом, чтобы склонность к КРН была минимальной. Термическая обработка с образованием твердого раствора влияет на склонность к коррозионному растрескиваткию, так как изменяет состав сплава в области границ зерен и микроструктуру сплава [33]. В некоторых случаях эксплуатационные температуры, особенно превышающие комнатные значения, могут приводить к искусственному старению сплава. При этом склонность к растрескиванию может увеличиться, и в присутствии влаги или хлорида натрия произойдет преждевременное разрушение металла. Любой из описанных выше сплавов проявляет наибольшую склонность к растрескиванию в тех случаях, когда растягивающее напряжение действует по нормали к направлению прокатки. По-видимому, в этом случае в процессе участвует большая часть граничных поверхностей удлиненных зерен, вдоль которых распространяются трещины. [c.354]

    В растворе, насыщенном H S и содержащем 5 % Na l и 0,1 % уксусной кислоты (имитация кислой среды газовых скважин), разрушение сплава зависит от температуры и скорости равномерной коррозии, которая преобладает в этих условиях и приводит к образованию водорода. При комнатной температуре разрушение вследствие водородного растрескивания (называемого иногда также сульфидным растрескиванием) протекает обычно только в том случае, если обработанные холодным способом сплавы были подвергнуты последующей термической обработке (состарены на заводе-изготовителе). Старение сплавов, увеличивающее их прочность, может приводить также к усилению равномерной коррозии в кислотах. При этом количество выделяющегося водорода становится достаточным, чтобы вызвать растрескивание. При повышенной температуре разрушения этого типа обычно уменьшаются (меньше водорода проникает в металл и больше удаляется в виде газа). Однако в области повышенных температур водородное растрескивание может смениться КРН, которое связано с присутствием хлоридов. В этом случае контакт сплавов с более активными металлами предотвращает растрескивание (протекторная защита). [c.371]

    Вследствие указанных причин точный расчет станин и картеров на прочность практически невозможен. В практике прочностные характеристики корпусных деталей проверяют экспериментально при предварительных испытаниях опытного образца компрессора. Вследствие многообразия и достаточной сложности форм, станины и картеры в основном изготовляют литыми из серого чугуна СЧ18 или СЧ20 по ГОСТ 1412—79. После предварительной обработки, с целью устранения остаточных литейных напряжений, они подвергаются старению. В отдельных случаях применяется литье из сплавов алюминия или сварные конструкции. [c.148]

    В качестве материала для изготовления тронковых поршней применяют чугун СЧ25 или СЧЗО и специальные алюминиевые сплавы. Для алюминиевых поршней характерны меньшая масса и меньший коэффициент трения, однако они уступают чугунным по износостойкости. Все поршни подвергают старению. При расчете на прочность днище поршня рассчитывают как сплошную круглую плиту, защемленную по периметру. Условное расчетное напряжение изгиба, возникающее по контуру заделки, определяется по формуле [c.180]

    В качестве материала для отливки тронковых поршней применяют чугун СЧ24—44 или СЧ28—48 и специальные алюминиевые сплавы, преимущественно кремнеалюминиевые различных составов [13]. Алюминиевые поршни отличаются меньшим весом и коэффициентом трения, но уступают чугуну по износостойкости. Все поршни подвергают старению. [c.394]

    Распад пересыщенных твердых растворов и связанные с ним процессы старения металлов и сплавов имеют огромное техническое значение. Это обусловлено тем, что часто выделяющаяся при распаде раствора избыточная твердая фаза в мелкодисперсиом состоянии упрочняет металл. Примером такого упрочнения является выделение интерметаллического соединения NigAl в жаропрочных сплавах типа нимоник. В широко применяемом в авиации сплаве — дюралюминии — при старении выделяются мелкие кристаллики uAlg. Кинетика распада твердых металлических растворов определяется (в зависимости от природы сплава) различными факторами. Общими чертами таких процессов, как и в рассматриваемых выше случаях, являются образование и рост зародышей новой фазы. Обычно при низких температурах скорость процесса определяется скоростью образования зародышей новой фазы, а при высоких — ростом зародышей путем диффузии. [c.389]

    Антикоррозионные свойства моторных масел зависят от состава базовых компонентов, концентрации и эффективности антикоррозионных, антиокислительных присадок и деактиваторов металлов. В процессе старения коррозионность моторных масел возрастает. Более склонны к увеличению коррозионности масла из малосернистьк нефтей с высоким содержанием парафиновых углеводородов, образующих в процессах окисления агрессивные органические кислоты, которые взаимодействуют с цветными металлами и их сплавами. [c.131]

    АЛЮМИНИЕВЫЕ СПЛАВЫ АК4, закалка, искусст старение Д16Т. закалка, естест. старение В95, закалка, искусст, старение [c.111]

    По мере старения геля SnOa идет изменение не только его физических, но и химических свойств. Различие последних для двух крайних случаев — свежеосажденного геля и сильно состарившегося — столь велико, что их приходится рассматривать в отдельности. СвежеосажДенную из солей форму называют обычно а-оловянной кислотой, а сильно состарившуюся (или полученную действием концентрированной HNO3 на олово) — -оловянной. Тогда как переход а-формы в -форму постепенно идет самопроизвольно, обратный переход может быть осуществлен лишь сплавлением -формы со щелочью и последующей обработкой сплава кислотой. Ниже сопоставлено отношение обеих форм к НС1 и КОН. [c.631]

    Фракционирование встречается и в процессе кристаллизации некоторых металлических сплавов, компоненты которых не могут растворяться в кристаллических решетках друг друга (не образуют твердых растворов). При этом образуются механические смеси, где каждый компонент кристаллизуется самостоятельно и образует собственные зерна. Примером может являться система свинец-сурьма (РЬ-5Ь), а также другие системы, образующие диаграмму состояния сплавов I рода [13]. При искусственном и естественном старении алюминиевых сплавов происходит перераспределение атомов меди и образование из них скоплений (зоны Гинье - Пресгона). [c.22]

    Сплав полиэтилена и полиизобутилена применяют в качестве эластичного электроизоляционного материала. Его получают обработкой смеси полиэтилена с полиизобутиленом на вальцах при ПО—120°. Для замедления процесса старения под влиянием кислорода воздуха в сплав вводят стабилизатор. Ме-.хагрическая прочность и твердость сплава ниже прочности и твердости полиэтилена, но эластичность больше. С повышением содержания полиизобутилена в сплаве уменьшается его прочиоси, н увеличивается эластичность. [c.219]

    Иногда эффект старения сплавов отчетливо сказывается на изменении их свойств, например на увеличении твердости, несмотря на отсутствие каких-либо металлографически наблюдаемых фазовых превраш,ений. Это явление было объяснено локальным повьшшнием концентрации одного из компонентов сплава в микрообластях, которое является как бы подготовительной стадией перед выделением новой фазы. [c.390]


Смотреть страницы где упоминается термин Сплавы старение: [c.274]    [c.78]    [c.262]    [c.262]    [c.163]    [c.258]    [c.48]    [c.159]    [c.160]    [c.48]    [c.53]    [c.390]    [c.155]   
Введение в термографию Издание 2 (1969) -- [ c.124 , c.126 , c.156 ]




ПОИСК





Смотрите так же термины и статьи:

Старение



© 2025 chem21.info Реклама на сайте