Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматы свойства

    Окислительные свойства молибденовой кислоты и молибдатов значительно слабее, чем окислительные свойства хромовой кислоты и хроматов. [c.285]

    При разработке технологий воздействия на пласт и призабойную зону знание состава и свойств остаточной нефти выдвигается на первый план. Исследования их проведены с использованием современных физико-химических методов анализа хромато-масс-спектрометрии, ЯМР Н и С -, ИК-, УФ- спектроскопии и др. [c.55]


    Опыт 8. Окислительные свойства хроматов [c.232]

    По свойствам они напоминают хроматы, но обладают более сильными окислительными способностями. [c.321]

    Соединения, содержащие Сг + — хромовый ангидрид, хроматы и бихроматы — являются сильными окислителями. Окислительные свойства аналогичных соединений молибдена и вольфрама выражены слабо. [c.210]

    Изучите свойства растворов хромата и дихромата калия. Приготовьте 0,1 М (или 0,01 М) растворы этих солей. [c.205]

    Концентрацию хромат-ионов следует устанавливать таким образом, чтобы красно-коричневое окрашивание появлялось при достижении показателя титрования. Для индикации конечной точки титрования в методах осаждения используют также адсорбционные индикаторы. По своему принципу действия они отличаются от описанных выше одно- и двухцветных индикаторных систем, поскольку изменение окраски происходит не в гомогенной среде, а на поверхности коллоидно-дисперсной фазы. Мало растворимые вещества обладают свойством преимущественной адсорбции имеющихся в растворе избыточных одноименных ионов. Если осадок образуется во время титрования, то электрический заряд его поверхности при т-< 1 определяет титруемое вещество, а при т > 1 — титрант. Вследствие притяжения тех или иных противоположно заряженных ионов образуется двойной электрический [c.72]

    Одиако и в кислой, и в щелочной среде окисление хрома (111) приводит к уменьшению pH раствора обратный же процесс — восстановление xpoMa(VI)—сопровождается увеличением pH. Полому, в соответствии с принципом Ле Шателье, прн повышении кислотности среды равновесие смещается н направлении восстановления хрома(VI), а при уменьшении кислотности — в направлении окисления хрома (III). Иначе говоря, окислительные свойства соединений хрома(VI) наиболее сильно выражены в кислой среде, а восстановительные свойства соединений хрома(1П)—в щелочной. Именно поэтому, как указывалось выше, окисление хромитов в хроматы осуществляют в присутствии щелочи, а соединения хрома (VI) применяют в качестве окислителей в кислых растворах. [c.657]

    Хром(П1)-наиболее распространенное состояние окисления хрома. Хром(П)-хороший восстановитель, а Сг(1у)-хороший окислитель. Как и следует ожидать, кислотность оксидов хрома изменяется в зависимости от его степени окисления СгОз обладает кислотными свойствами, СГ2О3-амфотерными, а СгО и Сг(ОН)2-основными. Распространенным оксианионом хрома является желтый хромат-ион, СгО , который в кислом растворе димеризуется с образованием оранжевого бихромат-иона  [c.443]


    Применение карбамида в виде пульпы имеет ряд преимуществ по сравнению с применением его растворов. Так, скорость комплексообразования в этом случае гораздо выше, так как не ограничивается скоростью охлаждения системы. Этот способ не требует реакторов больших размеров. Одним из условий, обеспечивающих достаточную эффективность процесса, является интенсивное перемешивание пульпы и нефтяного сырья. Таким образом, оптимальная глубина комплексообразования при высокой скорости процесса во многом определяется агрегатным состоянием и расходом карбамида. При этом следует учитывать свойства карбамида, т. е. его активность, размеры кристаллов, наличие примесей. Карбамид в кристаллическом состоянии более активен, чем в микрокристаллическом. Активность карбамида повышается в результате его предварительной обработки, например, ацетоном. Карбамид, применяемый, в процессе депарафинизации, содержит ряд примесей (биурет, нитраты, хроматы, бензоаты и др.), оказывающих как положительное, так и отрицательное влияние на камплексообразование. [c.229]

    Для получения особо чистых образцов, карбазол марки ч очищался хроматографическим методом, затем сублимацией и зонной плавкой. Оценка чистоты образцов проводилась методом хромато-масс-спектрометрии. Обнаруженные примеси составляют антрацен—0,0%, метилкарбазол—0,005% и тетраметилнафта-лин — 0,005%. Исследование физических свойств проводилось на монокристаллических образцах, выращенных по методу Бриджмана [1]. Ориентация образцов осуществлялась рентгенографическим методом по прямым лауэграммам [2]. [c.123]

    Методы, связанные с изменением свойств коррозионной среды. К ним относятся уменьщение концентрации компонентов среды, особенно опасных в коррозионном отношении (например, удаление растворенного в воде кислорода, подщелачивание раствора и т. п.) добавка специальных веществ — ингибиторов коррозии, которые оказывают тормозящее действие на коррозию. Оно связано или с окислением поверхности металла (нитриты, хроматы), или с образованием пленки труднорастворимого соединения между металлом и данным ингибитором (фосфаты, гидрофосфаты). В кислых растворах в качестве ингибиторов коррозии используют органические вещества, содержащие амино-, ИМИН0-, тио- и другие группы их действие связано с образованием защитной адсорбционной пленки органического вещества на поверхности металла. [c.403]

    Среди пигментов, рекомендуемых для грунтов, лишь несколько действительно отвечают предъявляемым к ним требованиям. К эффективным пигментам, чье действие подтверждено многими специальными испытаниями, относятся свинцовый сурик РЬз04, имеющий структуру ортоплюмбата свинца РЬаРЬ04, а также хромат цинка 2пСг04 и основной хромат или тетраоксихромат цинка. В случае свинцового сурика ингибирующим ионом, по-видимому, является РЬО ", высвобождающийся в достаточном количестве, чтобы запассивировать сталь и тем самым защитить ее от коррозии под действием воды, которая достигает поверхности металла. Вероятно, некоторые другие оксиды и гидроксиды свинца также обладают ингибирующими свойствами, но свинцовый сурик является лучшим из соединений свинца. [c.250]

    Пассиваторы обычно представляют собой неорганические вещества с окислительными свойствами (например, хроматы, нитриты или молибдаты), которые пассивируют металл и сдвигают коррозионный потенциал на несколько десятых вольта в положительную сторону. Непассивирующими ингибиторами, такими как ингибиторы травления, обычно служат органические вещества, которые весьма слабо воздействуют на коррозионный потенциал, сдвигая его в сторону больших или меньших значений, не более чем на несколько тысячных или сотых долей вольта. Как правило, пассивирующие ингибиторы понижают скорость коррозии до очень малых значений, будучи в этом отношении более эффективными, чем большинство непассивирующих. [c.260]

    Показано, что для пассивации железа молибдатами и воль-фраматами, которые проявляют ингибирующие свойства в растворах, близких к нейтральным, также требуется наличие растворенного кислорода [12, в отличие от случая хроматов и нитритов. Растворенный кислород способствует созданию катодных участков в количестве, достаточном для пассивации ограниченного числа остающихся анодных участков, на которых с повышенной скоростью протекает восстановление М0О4 или WO4". В отсутствие кислорода /крит на этих участках не достигается. [c.264]

    Исследованиями В. Д. Городнова и Т. В. Изумрудовой установлено, что активация сульфатного щелока достигается введением в него солей хромовых кислот при температуре 90—95° С. При этом получаемые препараты обладают более выраженной стабилизирующей способностью и термостойкостью, чем сульфатный щелок. Получение препаратов ХСЩ осуществляется следующим образом. В нагретый сульфатный щелок при перемешивании вводится 2—4% хромата или бнхромата натрия или калия. Реакция продолжается 1,2—2,0 ч и сопровождается загущением смеси. При достижении вязкости смеси, равной 100—120 сПз, она сливается в П0ДД0Н1.Г слоем толщиной 10—15 см. При атмосферных условиях через 6—10 ч препарат затвердевает и уже через 16—20 ч подвержен диспергированию до порошкообразного состояния, не слеживающегося при хранении. Препараты с 2% бихромата калия названы ХСЩ-2, с 3% — ХСЩ-3 и с 4% — ХСЩ-4. Большие добавки бихромата (до 10%) мало улучшают качество полученного реагента, повышая его стоимость. Данные о влиянии полученных препаратов ХСЩ на свойства промывочных жидкостей приведены в табл. 72. [c.160]


    Термостойкость неминерализованных буровых растворов определяется не только типом применяемых для обработки химических реагентов понизителей водоотдачи или вязкости и составом твердой фазы, но и в ряде случаев.от наличия в системе специальных добавок, которые сами по себе, т. е. без реагентов-понизителей водоотдачи или вязкости, не оказывают сколько-либо заметного влияния на вязкостные и фильтрационные свойства буровых растворов. К таким добавкам в основном относятся хроматы и би-хроматы натрия и калия. (Хромовые соли калия по стоимости значительно выше, а по действию аналогичны натриевым солям.) Применение метода раздельного введения хромовых солей в буровой практике Советского Союза началось в начале 60-х годов по предложению Э. Г. Кистера и быстро получило широкое распространение. Наиболее важные химические свойства хроматов — сильная окислительная способность с восстановлением шестива-лентного хрома до трехвалентного и склонность к интенсивному комплексообразованию. Окислительные свойства хроматов зависят от pH среды, наличия восстановителя и температуры. Особенно, как указывает Э. Г. Кистер, в присутствии сильных восстановителей хроматы могут окисляться в нейтральной и даже слабощелочной среде. При нагревании восстановление хроматов усиливается и проявляется даже при высоких значениях pH. Заметно ускоряется этот процесс при 80 С, а при 130—150 С достигает максимума (кривая зависимости выполаживается). [c.176]

    Температура электролита и плотность тока оказывают большое влияние на выход по току и свойства катодных осадков хрома. Выход металла по току при повышении температуры уменьшается, а при повышении плотности тока увеличивается (рис. ХП-18). Предполтгают [42], что первое связано с удалением от поверхности катода продуктов восстановления хромат-ионов и [c.418]

    Для повышения защитных и антикоррозионных свойств окисной пленки изделия после оксидирования и промывки обрабатывают паром или горячей водой, погружают в горячие растворы хроматов и бихроматов. При этом происходит гидратация окисла и поры смыкаются, а при обработке хроматами, кроме того, образуются соединения типа (А10)2Сг04. [c.455]

    Оксидные пленки пористы и обладают большой адсорбционной способностью. Эти свойства исиользуют для повышения защитной способности пленок путем так называемого наполнения пленок их обрабатывают пассиваторами, паром или горячей водой, вызывая гидратацию оксида, уменьшение его плотности и, следовательно, увеличение сго объема, что приводит к уменьшению пористости. Особенно эффективна пропитка растворами хроматов и бихроматов при повышенной температуре, во время которой происходит не только гидратация оксида, но и адсорбция хромата с образованием соединений типа (А10)2Сг04. Способность пленки окрашиваться также связана с ее пористостью. [c.83]

    Аналогия свойств ванадатов с вольфраматами, молибдатами, хроматами, ман-ганатами(У), арсенатами, фосфатами и сульфатами проявляется также в возможности их осаждения при действии ряда ионов тяжелых и щелочноземель-Н )1х металлов (см. также разделы, посвященные соответствующим элементам ). [c.613]

    Изменение свойств коррозионной среды пригодно для случаев, когда защищаемое изделие эксплуатируется в ограниченном объеме жидкости. Метод состоит в удалении из раствора, в котором эксплуатируется защищаемая деталь, растворенного кислорода (деаэрация) или в добавлении к этому раствору веществ, замедляющих коррозию, — ингибиторов. В зависимости от вида коррозии, природы металла и раствора применяются различные ингибиторы. При атмосферной коррозии применяют хорошо адсорбирующиеся на металле вещества мо-ноэтаноламин, карбонат аммония, уротропин, нитрит натрия. Для нейтральной коррозионной среды и растворов солей в качестве ингибиторов используют неорганические соли хромовых кислот, фосфорной, кремниевой, азотной и азотистой кислот. В кислых средах используют органические ингибиторы, содержащие атомы азота, серы, фосфора, кислорода и группировки атомов с ненасыщенными связями. Защитное действие ингибиторов обусловлено тем, что их молекулы или ионы адсорбируются на поверхности металла и каталитически снижают скорость коррозии, а некоторые из них (например, хроматы и дихроматы) переводят металл в пассивное состояние. [c.693]

    Некоторые соли ртути (П) проявляют свойства слабых электролитов, обусловленные сильным поляризационным взаимодействием между их ионами. Такие соли образуют осадок только с раствором К2СГО4, содержащим значительно большую концентрацию ионов СгО . Так, Hg r04 осаждается из расгвора Н С1г только хроматом калия и не осаждается дихроматом. [c.291]

    Состав и строение координационных сфер координационных полимеров определяется на основании результатов изучения химических свойств полимера, измерения молекулярного веса в органических растворителях, молекулярной электропроводности растворов или хромато графичеоким методом. [c.74]

    Уран отличается высокой химической активностью и реагирует при тех или иных условиях со всеми неметаллами, за исключением инертных газов. Со многими металлами уран образует интерметаллические соединения. На воздухе при комнатной температуре уран окисляется медленно, но при 150°С скорость окисления резко возрастает. При взаимодействии с кислородом уран образует шесть оксидов иО, иОг, идОд, ОзО,, УзОз и иОз. Наиболее устойчивы оксиды иОг и иОд. Оксид иОг имеет основной характер, оксид иОз — амфотерен. Прираст-ворении иОз в кислотах образуются соли уранила иО (например, уранилсульфат 002504). При растворении иОз в щелочах образуются соли иО (например, уранат калия Кги04) или ИгО (например, диуранат калия КгУгО,). Наблюдаются сходства в свойствах урана и элементов побочной подгруппы VI группы периодической системы элементов Менделеева (Сг, Мо, Ш) уранаты аналогичны хроматам, а диуранаты — дихроматам. [c.325]

    Соединения шестивалентного хрома. Известны многочисленные соединения шестивалентного хрома, например трехокись СгОз, хроматы (Сг04) -, бихроматы СггО ) , трихроматы (СгзОю) , тетрахроматы (Сг401з) . В высшей степени окисления хром проявляет неметаллические свойства и благодаря этому входит в состав анионов. [c.342]


Смотреть страницы где упоминается термин Хроматы свойства: [c.507]    [c.41]    [c.216]    [c.530]    [c.410]    [c.62]    [c.53]    [c.395]    [c.24]    [c.514]    [c.124]    [c.280]    [c.332]    [c.510]    [c.144]    [c.196]    [c.229]   
Основы аналитической химии Книга 1 (1961) -- [ c.513 ]




ПОИСК





Смотрите так же термины и статьи:

Ингибиторы, состав и свойства хроматы

Калия хромат, свойства

Основные физико-химические свойства хромата и бихро- а мата кальция

Основные физико-химические свойства хромата и бихромата аммония

Основные физико-химические свойства хромата и бихромата магния

Основные физико-химические свойства хромата калия

Основные физико-химические свойства хромата натрия

Хромат защитные свойства

Хромат пассивирующие свойства

Хромат свинца влияние дисперсности на свойств

Хромато

Хроматы

Хроматы, получение и свойства



© 2025 chem21.info Реклама на сайте