Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Комплексообразование скорость, влияние

    На полноту образования комплексных соединений, растворимых в воде или органических растворителях (экстрагируемых соединений), влияет ряд факторов pH, избыток реагента, скорость образования соединения. Влияние pH может сказываться различно. Если в реакции в качестве лиганда участвуют анионы слабой органической кислоты, от величины pH раствора будет зависеть концентрация той формы лиганда, которая участвует в комплексообразовании. Малоустойчивые комплексные соединения при увеличении pH раствора разрушаются или меняют состав вследствие гидролиза иона комплексообразователя. От pH водной фазы зависит процент экстракции комплекса в органическую фазу. [c.43]


    Высвобождение из комплекса при его дроблении некоторой части входящих В него молекул также подтверждает физическую природу комплексообразования. Некоторые исследователи [5, 15] считают, что взаимодействие карбамида с н-алканами аналогично взаимодействию их с цеолитами. Однако точка зрения на структуру комплекса как на физическое явление не подтверждается величиной энергии связи углеводорода с карбамидом, приходящейся на каждую группу СН2. Установлено [I, 15], что она равна 6,7 - 11,76 кДж, в то время как силы Ван-дер-Ваальса равны всего 4,19 кДж на каждую СН2. Другие исследователи [25, 2б] относят кристаллические комплексы углеводородов и их производных с карбамидом к чисто химическим соединениям, поскольку реакция комплексообразования подчиняется общим законам течения химических реакций, в частности закону действующих масс. Изменение условий комплексообразования оказывает влияние на равновесие, скорость образования комплекса, эффективность разделения и на другие пока- [c.36]

Рис. 100. Влияние интенсивности перемешивания на скорость комплексообразования твердых парафинов гача долинской нефти Рис. 100. <a href="/info/1036703">Влияние интенсивности перемешивания</a> на скорость комплексообразования <a href="/info/315709">твердых парафинов</a> гача долинской нефти
    На скорость многих быстрых реакций в растворах сильное влияние оказывает диффузия реагентов. При этом могут возникать эффекты, приводящие в конечном счете к сильным отклонениям от уравнений (4.11), (4.12), (4.18) и несовпадению зависимостей фо/<р и то/т даже в отсутствие комплексообразования в основном состоянии. Эти эффекты возникают вследствие того, что за время протекания реакции (определяемое вре- [c.187]

    Удельная скорость комплексообразования на свободной поверхности раздела жидких фаз — в отсутствие смол не зависит от дисперсности эмульсии, а в присутствии смол с уменьшением дисперсности эмульсии понижается, т. к. при этом растет поверхностная концентрация их. Увеличение М В понижает дисперсность эмульсии. Поэтому в присутствии смол увеличение М . В оказывает на индукционный период два противоположных действия сокращает в результате увеличения частоты слияния и дробления капель масла и увеличивает в результате снижения дисперсностя эмульсии. Из кривых 2 и 3 рис. 2 видно, что при малых М В преобладает эффект от снижения дисперсности эмульсии, а при больших — от увеличения частоты слияния и дробления капель, т. е. с увеличением М В дисперсность эмульсии понижается замедленно. Поскольку с ростом концентрации смол при данном М В индукционный период увеличивается ускоренно, то при большом их содержании действие М В через снижение дисперсности эмульсии должно усиливаться. Этим можно объяснить смещение максимума кр. 3 вправо относительно максимума кр. 2. Схема влияния М В на индукционный период при различном содержании смол показана на рис. 3. [c.87]


    В данной статье рассмотрим влияние смол и соотношения фаз на скорость комплексообразования в основном периоде. [c.91]

    Целью данной работы является изучение механизма образования конечной структуры комплекса-сырца. Для этого рассмотрим подъем температуры в основном периоде комплексообразования, вязкость и структуру конечного комплекса-сырца, образующегося в опытах, описанных в первой статье данной серии. Чтобы оценить влияние теплоты трения на подъем температуры в основном периоде, каждый опыт проводился с непрерывным перемешиванием и с остановкой мешалки в момент достижения наибольшей скорости комплексообразования. Подъем температуры определялся по термограммам основного периода по правилам калориметрии. Вязкость конечного комплекса-сырца оценивалась по подъему температуры системы после завершения комплексообразования. [c.102]

    Органические молекулы образуют между собой самые разнообразные комплексы. Среди них 1) рассматриваемые здесь ковалентные комплексы, образующиеся быстро и обратимо 2) электростатические или ионные комплексы 3) комплексы, получающиеся в результате образования водородных связей 4) комплексы ионов металлов 5) неполярные комплексы 6) ми-целлярные комплексы и 7) полимерные комплексы. Большинство этих комплексов может влиять на скорости химических реакций. В настоящей главе мы подробно разберем влияние комплексообразования на ход каталитических реакций. [c.297]

    Если бы мы проследили влияние образования л-комплексов на скорости органических реакций, то пришли бы к выводу, что образование таких комплексов значительно чаще замедляет реакции, а не ускоряет их. Природа этого ингибирующего эффекта становится очевидной при обращении к уравнению (12.16), которое показывает, что связанный в комплекс субстрат не превращается в продукты реакции и реакционноспособным остается только свободный субстрат. Простейшее объяснение ингибирования как результат непродуктивного комплексообразования предполагает, что связывание мешает доступу какого-либо реагента к субстрату и таким образом затрудняет ход реакции. [c.313]

    Ясные сведения об ЭКВ дают исследования влияния конформации на скорость медленного изотопного обмена водорода в полинуклеотидах, проведенные Варшавским и сотрудниками [128]. Скорость обмена водорода на тритий у атома Се пуринового кольца в полиадениловой кислоте зависит от распределения электронной плотности в пурине. Это распределение изменяется при конформационных движениях, вызванных сдвигом pH и комплексообразованием с полиуридиловой кислотой. Скорость изотопного обмена весьма чувствительна к таким изменениям электронной плотности. [c.408]

    Когда такие факторы, как природа субстрата, нуклеофила и уходящей группы, постоянны, активация аниона зависит от растворителя, а также от природы и концентрации лиганда. Бициклические криптанды, такие, как 5, оказывают более сильное влияние, так как они в большей степени охватывают катион, образуя тем самым более стабильные комплексы. В полярных апротонных растворителях крауны обусловливают усиление диссоциации. В других системах (например, грег-бутоксид натрия в ДМСО) ионные агрегаты разрушаются в результате комплексообразования с краунами, что приводит к увеличению основности алкоксида, измеряемой скоростью отщепления протона [101]. В менее полярной среде, такой, как ТГФ или диоксан, доминирующими частицами являются ионные пары. В этом случае краун-эфиры могут благоприятствовать образованию разделенных растворителем более свободных (рыхлых) ионных пар [38, 81] с более высокой реакционной способностью [102]. Даже в гидроксилсодержащих растворителях при добавлении краунов наблюдаются удивительные эффекты, так как изменяются структура и состав сольватной оболочки вокруг ионной пары и ионные агрегаты частично разрушаются. Например, сильно изменяется соотношение син1 анти-изомеров при элиминировании, катализируемом основаниями [103]. [c.40]

    Температура. В действии температурных изменений на хроматографический процесс следует различать две стороны влияние на кинетику процесса, т. е. на скорость установления равновесия, и влияние на реакции комплексообразования в растворе. По своему первому действию увеличение температуры аналогично увеличению степени дисперсности фазы ионообменника, что приводит к заметному улучшению качества разделения благодаря сужению пиков отдельных элементов (рис.6) [1221]. [c.98]

    Влияние комплексообразования, предшествующи.к и последующих химических реакций на скорость суммарной реакции, а также адсорбции растворителя и промежуточных частиц на процесс кристаллизации будет рассмотрено ниже для конкретных систем. [c.12]

    В ряде работ комплексообразование исследовано методом экстракции, с использованием радиоактивных изотопов или спектрофотометрии. Работ по применению спектрофотометрического варианта сравнительно немного. Методом экстракции (экстрагент — четыреххлористый углерод или хлороформ) определены константы устойчивости комплексов ПАН-2 с ионами Со(П1), Си, Мп, 2п и Ы1 [559], ПАР с ионами Са [869]. Установлено, что скорость экстракции комплекса ПАН-2 с и(У1) четыреххлористым углеродом выше, чем при экстракции хлороформом [201]. Методом экстракции изучено комплексообразование ПАН-2 с ионами Си, Мп, N1 [678], 1п [549, 918], Ее(П1), Т1(П1) [918]. Радиоактивные изотопы приме-няли для изучения экстракции комплексов ПАН-2 с ионами Си, 2п [278, 759] Ag, Ей, Но, V [760] Со, Си, Мп, N1, 2п [5591 комплекса ПАР с Оа [869], а также для исследования влияния различных маскирующих веществ — цитрата, цианида, тиомочевины, тиосульфата, фторида на экстракцию комплексов ПАН-2 с элемента ми ГВ, ПВ и П1А—УА групп периодической системы [795]. Хорошая растворимость ПАН-2 в органических растворителях и удов летворительное состояние развития теории экстракции примени тельно к реакциям комплексообразования должны способствовать успешному применению метода ко многим системам. [c.36]


    Влияние на скорость ионного обмена химической кинетики в большинстве случаев определяется экспериментально по зависимости скорости процесса от температуры, которая, согласно закону Аррениуса, должна быть значительной, если именно кинетика химического реагирования определяет общую скорость ионообменного процесса. Многочисленные проведенные исследования показали, что даже в случае комплексообразования общая скорость ионного обмена в заметной степени не лимитируется химической реакцией. Следовательно, кинетика процессов ионного обмена определяется скоростью переноса массы, что позволяет считать ионообменные процессы во многом аналогичными изотермическим процессам адсорбции. [c.251]

    В литературе по ионообменным процессам рассматриваются многочисленные случаи кинетики внутреннего переноса в зернах ионитов при влиянии не только диффузионного переноса, но и переноса за счет электродиффузионного потенциала, с учетом влияния двойного электрического слоя на внешней границе зерна, с заметной ролью внешнедиффузионного сопротивления и т. д. Многочисленность кинетических вариантов здесь определяется тем обстоятельством, что для различных структур ионитов и разнообразных условий проведения процесса возможны различные комбинации существенно влияющих на суммарный процесс эффектов, а те или иные эффекты могут быть приняты пренебрежимо малыми. Действительно, только при чисто диффузионной определяющей кинетике возможны режимы, когда заметное влияние на суммарную скорость процесса оказывает только сопротивление внутренней диффузии в других случаях скорость процесса ионного обмена определяется суммарным сопротивлением наружного и внутреннего переноса компонента, а в иных случаях определяющим фактором может стать одно только наружное сопротивление в различных комбинациях могут рассматриваться обратимые или необратимые химические реакции, комплексообразования и т. д. Так, при [c.251]

    Скорость перемещения металла по слою катионита определяется как простым вытеснением, так и комплексообразованием. Влияние последнего тем больше, чем прочнее образующееся комплексное соединение, чем больше концентрация комплексообразующего реагента и выше pH раствора (малые значения В). Наоборот, при очень низких концентрациях комплексообразующего реагента и малых значениях констант устойчивости комплекса, очень малых константах диссоциации и высоких кислотностях раствора, т. е. при практическом отсутствии явления комплексообразования, уравнение передает скорость перемещения компонента только за счет простого вытеснения. [c.285]

    Сведений о термодинамике и кинетике процесса комплексообразования твердых парафиновых углеводородов с карбамидом мало. Влияние ряда факторов, в том числе расхода карбамида на скорость и глубину процесса комплексообразования, исследовано на смесях н-парафинов С18—С20 с чистотой 987о (по данным газожидкостной хроматографии). В качестве растворителя применяли бензол, в качестве активаторов—метанол и этанол. Степень извлечения н-парафина определяли по составу компонентов жидкой фазы, для чего использован показатель преломления бинарных смесей с различным содержанием н-парафина. На кинетических кривых зависимости содержания углеводорода в комплексе (на примере н-октадекана) от расхода карбамида (рис. 94, 95) можно выделить два участка, первый из которых характеризуется быстрым ростом С18 в комплексе, что соответствует начальному периоду процесса, а второй указывает на установление равновесного состояния и выражается прямой, параллельной оси абсцисс. [c.226]

    Значительное влияние на поляризацию при катодном осаждении металлов оказывают коллоидные и поверхностно-актив-ные вещества, присутствующие в небольших количествах в электролитах. Добавки, дающие коллоидные растворы, образуют с разряжающимися ионами металла комплексы адсорбционного характера. Повышение катодной поляризации при этом объясняется недостаточной скоростью выделения ионов металла из коллоидного комплекса в прикатодном слое. Примером такого случая может служить катодное выделение цинка из сернокислых растворов в присутствии желатина (рис. 139, кривые 1—4). Понижение поляризации при больших концентрациях добавки объясняется укрупнением частиц коллоидов, их коагуляцией и связанным с этим ослаблением комплексообразования. [c.339]

    Применение карбамида в виде пульпы имеет ряд преимуществ по сравнению с применением его растворов. Так, скорость комплексообразования в этом случае гораздо выше, так как не ограничивается скоростью охлаждения системы. Этот способ не требует реакторов больших размеров. Одним из условий, обеспечивающих достаточную эффективность процесса, является интенсивное перемешивание пульпы и нефтяного сырья. Таким образом, оптимальная глубина комплексообразования при высокой скорости процесса во многом определяется агрегатным состоянием и расходом карбамида. При этом следует учитывать свойства карбамида, т. е. его активность, размеры кристаллов, наличие примесей. Карбамид в кристаллическом состоянии более активен, чем в микрокристаллическом. Активность карбамида повышается в результате его предварительной обработки, например, ацетоном. Карбамид, применяемый, в процессе депарафинизации, содержит ряд примесей (биурет, нитраты, хроматы, бензоаты и др.), оказывающих как положительное, так и отрицательное влияние на камплексообразование. [c.229]

    Обращает на себя внимание необычно высокая положительная величина А5 для миозина (аденозинтрифосфатазы). Такое изменение энтропии, согласно результатам исследования Лейдлера, Оллета и Моралеса [1], объясняется по крайней мере двумя причинами а) нейтрализацией положительного и отрицательного зарядов при взаимодействии фермента с субстратом, сопровождающейся дегидратацией ионов б) существенными конформационными изменениями третичной структуры фермента при комплексообразовании. Исследование влияния температуры на скорость отдельных стадий ферментативной реакции базируется на теории переходного состояния. Согласно этой теории, взаимодействующие молекулы при их сближении образуют переходное состояние (переходный или активированный комплекс), причем между исходным и переходным состоянием устанавливается динамическое равновесие. Вместе с тем, переходный комплекс претерпевает непрерывное превращение с образованием продуктов реакции. С этой точки зрения простейшую ферментативную реакцию Е + З ЕЗ- Е + Р следует рассматривать как многостадийную  [c.131]

    Установлено наличие основного катализа в реакции обмена радикалами между eHsLi (1) и СбНбВг. В роли основания выступает нуклеофильная часть 1, обеслс-чивая замкнутую структуру переходного состояния. Комплексообразование оказывает влияние на нуклеофильную координацию по атому лития в I, определяя его реакционную способность, Методом комплексообразования определены константы скорости элементарных стадий реакций обмена. Илл. 2, табл. 1, библ. 5 назв. [c.114]

    Размеры частиц карба1лида оказывают существенное влияние на скорость комплексообразования. Индукционный период при использовании карбамида, обработанного ацетоном, с размерами частиц 0,01-0,03 мм менее [c.67]

    На опыте влияние строения двойного слоя на процессы с предшествующей химической реакцией проявляется главным образом в виде зависимости констант скорости от состава раствора (при этом следует, конечно, учитывать возможное комплексообразование с компонентами раствора или другие виды взаимодействия с ними), так как при изменении состава раствора изменяются свойства двойного электрического слоя. Помимо этого, наблюдается также и изменение предельного тока с потенциалом его величина падает при увеличении потенциала, если заряд деполяризатора совпадает по знаку с поляризацией электрода, и возрастает, если знаки их зарядов противоположные. Примерами первого случая могут служить спады на площадке предельного тока фенилглиоксалевой кислоты, ограниченного скоростью рекомбинации ее анионов (процесс этот, очевидно, очень сложен, и, кроме строения двойного слоя, здесь играют роль также другие факторы, о которых речь будет идти ниже), а также уменьшение последней волны восстановления цианида кадмия [78], предельный ток [c.330]

    На рис.2.21 показано влияние степени очистки сырья от смол и ароматических углеводородов на длительность комплексообразования кристаллическим карбамидом. Приведенные данные подтверждают отрицательное влияние смол на скорость реакции коыплексообразсеания. Аналогичное явление наблюдается и при применении спиртоводного раствора карбамида. [c.90]

    Влияние смол на скорость комплексообразования изучалось Б. В. Клименком с сотр. [98]. К газойлевой фракции добавляли водный или спиртовой раствор карбамида и бензольный раствор смол, специально выделенных из гудрона силикагелем. Для водного раствора карбамида температуру принимали равной [c.51]

    На скорость нуклеофильного замещения может оказать значительное влияние донорно-акцепторное комплексообразование. Так, ацетолиз 2,4,7-тринитро-9-флуоренил-п-то-зилата ускоряется в 20 раз, если в реакционную среду ввести фенантрен. Спектроскопически показано, что он образует комплекс с переносом заряда с производным флуоренила. Подавая п-электроны, фенантрен содействует поляризации связи С—ОТз и последующему отщеплению тозилат-иона [c.191]

    Особенно целесообразно учитывать значения коэффициентов активности растворенного вещества для малорастворимых и хорошорастворимых соединений при наличии комплексообразователей. При комплексообразовании вследствие малых значений уо степень пересыщения ср а существенно возрастает, что позволяет по-иному, чем принято, подойти к оценке влияния пересыщения на скорость зародышеобразования, которое определяет гранулометрический состав получаемого продукта. Только сравнение т и по соотношениям (4.45—4.47) не дает возможности обосновать на практике размеры получаемых кристаллов. [c.107]

    Нагревание, как правило, ускоряет протекание реакций. Влияние pH растворов неоднозначно. Скорость реакций с непосредственным участием ионов Н3О+ обычно возрастает с увеличением их концентрации во многих случаях ион водорода играет роль катализатора. В других случаях воздействие ионов Н3О+ является косвенным изменение pH среды влияет на процессы комплексообразования или осаждения малорастворимых соединений, что, в свою очередь, приводит к изменению соотношения концентраций окисленной и востановленной форм, а следовательно, и к изменению скорости реакции. [c.80]

    Иногда для повышения скорости комплексообразования применяются нагрев или даже кипячение раствора, однако при работе с катионами, являющимися окислителями, такой способ не всегда приемлем. Следует отметить, что существует не только влияние свойств аква-иона металла на скорость образования комплекса, но и обратное явление ускорение обмена молекул воды в координационной сфере металла при координации комплексона. Так, [637] показано, что ЭДТА катализирует обмен лигандов в комплексах СгЗ+, Os +, Rus+, Со , Рез+, Ti +. Например, замещение молекулы воды в ближайшем окружении хро-ма(1П) на монодентатные лиганды в биядерном комплексонате <3.2.1)  [c.345]

    С увеличением выхода комплекса дисперсность масляной фазы возрастает, что снижает скорость самодиспергирования ее капель путем неравного деления и уменьшает влияние дисперсности эмульсии в индукционном периоде на скорость комплексообразования. Следовательно, одной из причин роста ускорения комплексообразования в начале основного периода с увеличением концентрации смол является увеличение дисперсности эмульсии в индукционном лериоде. [c.100]

    Поскольку в наших опытах исходные концентрации реагентов были небольшими, то комплексообразование заканчивалось при пластической или промежуточной структурах комплекса-сырца. При больших М . Вь недостатке была мочевина, поэтому при комплексообразовании концентрация н-цетана снижалась незначительно, и переход части масла в сплошное состояние не оказывал заметного влияния на скорость комплексообразования и выход комплекса. Если бы при больших М В в недостаке был н-цетан, то переход масляной фазы в сплошное состояние приводил бы к резкому снижению скорости комплексообразования, т. к. в нем участвует главным образом диспергированная масляная фаза. В отсутствие перемешивания после перехода всей масляной фазы в сплошное состояние скорость комплексообразования близка к нулю, несмотря на то, что система далека от равновесия. Поэтому сделанный вывод о том, что перемешивание не влияет на комплексообразование в основном периоде, является частным. [c.107]

    Замещение внутрициклического атома водорода ЫН-группировки НгП с образованием Ы-замещенных порфиринов дает в результате еще более сложное сочетание структурно-электронных изменений. Наряду со значительным искажением молекулы и поляризацией макрокольца К-заместителем ( /-эффект), здесь может наблюдаться частичная перегибридизация Н-замещенного атома азота (,5р р ) [84-86]. Факт смены гибридизации находит подтверждение в спектрах ПМР и данных РСА [85], а также в изменении реакционной способности молекул, которая не может быть объяснена лишь электронными эффектами Ы-заместителей. Перегибридизация оказывает дополнительное влияние на снижение электронной составляющей МЦЭ, поскольку повышает химическое средство пирролениновых (-Н=) атомов азота координационного центра молекулы НгП. Ы-замещенный атом азота приобретает в этом процессе свободную электронную пару и свойства, близкие к аминным. Как известно, амины обладают высокими электронодонорными свойствами, легко вступая в реакции протонирования и комплексообразования, однако образующиеся комплексы отличаются низкой термодинамической устойчивостью. Аналогичная картина наблюдается в случае Ы-замещенных порфиринов [85]. Данные табл. 7.11 показывают, что Ы-замещение приводит к возрастанию скорости комплексообразования НгТФП (7) в Ю -КУ раз. При этом энергии активации процесса снижаются вдвое, а степень сольватации переходного состояния увеличивается. [c.353]

    И. Корыта теоретически разобрал различные случаи разряда комплексных ионов [233] обратимого и необратимого, ограниченного диффузией или скоростью диссоциации, и привел таблицу уравнений волн, зависимости от периода капания и концентрации комплексообразователя для рассмотренных случаев. Корыта рассмотрел также обпщй вопрос о влиянии комплексообразования на полярографические волны [234] и привел методы определения констант нестойкости комплексов и констант скорости их диссоциации из полярографических данных. [c.45]

    Прод)п<т, выделенный при разложении комплекса, представляет собой сложную смесь нормальных апканов (до 95%), углеводородов других гомологических рядов и смолисто-асфальтеновых веществ. В настоящее время среди исследователей также нет единого мнения о влиянии смол на реакцию комплексообразования нормальных алканов с карбамидом. Ряд авторов [10,-28, 48, 102] утверждает, что смолы, содержащиеся в нефтяном сырье, тормозят реакцию комплексообразования, снижая скорость образования комплекса и увеличивая -индукционный период, а также уменьшают количество извлекаемых нормальных алканов. [c.68]

    Существенное влияние на селективность процессов окисления оказывают также макроскопичеокие факторы (диффузия, теплообмен). Увеличивая Линейную скорость потока газа или скорость циркуляции, можно в определенных условиях устранить влияние внешней диффузии. Чтобы предотвратить влияние инутренней диффузии, подбирают для катализаторов носители с определенной структурой и размером пор. При выборе контактного аппарата необходимо обеспечивать стабильный термический режим и устранять возможность перегрева слоя катализатора. Для повышения селективности многих процессов гетерогеннокаталитического окисления углеводородов в состав реакционной смеси вводят водяной пар. Механизм действия воды пока не выяснен. Возможно, что вода участвует в комплексообразовании углеводородов на по-верхпостн катализатора или создает иа ией ОН-группы (при диссоциации молекулы НаО) и т. д. [c.308]

    Используя полное уравнение, можно определить Ка и Къ при низких концентрациях субстрата, в то время как при высоких его концентрациях можно определить К п и К ъ- Знание этих констант диссоциации позволяет проникнуть в природу групп в комплексе и свободном ферменте на основании этих данных можно определить, какие группы подвергаются влиянию комплексообразования, и поэтому получить некоторые сведения о группах, являющихся активными при образовании комплекса с субстратом. Лэйд-лер [62[ составил таблицу данных, показывающих влияние на величину К комплексообразования, протекающего по тем местам молекулы, которые подвергаются ионизации, и, кроме того, связывающих эти эффекты с изменениями скорости и константы Михаэлиса при изменении pH. Там, где такие сведения оказываются непол ными, иногда для вычисления Ка или Къ можно воспользоваться методом, предложенным Диксоном (381. Сведения о группах, участвующих в комплексообразовании, были получены для взаимного превращения ионов фумаровой и малеиновой кислот в присутствии фумаразы [63J, для гидролиза сахарозы в присутствии сахаразы [64[, для гидролиза ацетилхолина при наличии холинэстеразы и ацетилхолинэстеразы [65[ и для окисления 2-амино-4-оксиптеридина в присутствии ксантиноксидазы [38]. [c.135]

    На электроосаждение оказывают влияние следующие явления, связанные с комплексообразованием 1) термодинамический эффект, или сдвиг равновесного потенциала 2) кинетический эффект, или изменение обменного тока. Термодинамический эффект заключается всегда в сдвиге потенциала в отрицательную сторону, следовательно, он затрудняет осаждение [см. уравнение (15-506)]. Кинетический эффект может быть направлен в любую сторону, так как скорость обмена электронами между электродом и комплексом может быть как больше, так и меньше скорости обмена между электродом и гидратированным ионом. В самом деле, если разряд гидратированного иона сопровождается возникновением высокого сверхпотенциала вследствие очень малой величины обменного тока, образование комплекса может настолько повысить обменный ток, что происходящее ири этом падение сверхпотенциала более чем компенсирует сдвиг равновесного потенциала. В этом случае осаждение лучше проводить из раствора комплекса, а не из водного раствора, содержащего гидратированные ионы металла. Прекрасным примером может служить электроосаждение никеля, разряд гидратированных ионов которого на ртутном капельном электроде происходит при величине сверхпотенциала более 0,5 в. В присутствии комплексанта, иапример тиоцианата, пиридина или больших концентраций хлорида, никель восстанавливается значительно легче. [c.344]


Смотреть страницы где упоминается термин Комплексообразование скорость, влияние: [c.207]    [c.207]    [c.302]    [c.214]    [c.51]    [c.62]    [c.145]    [c.345]    [c.501]    [c.331]    [c.107]    [c.139]    [c.46]   
Фотометрический анализ (1968) -- [ c.113 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние комплексообразования

Комплексообразование

Комплексообразованне



© 2025 chem21.info Реклама на сайте