Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разгонка фракционная

    В настоящее время за рубежом распространен процесс фтористоводородного алкилирования — производство высококачественного автомобильного алкилата взаимодействием пропилена, бутиленов и амиленов с изобутаном. Имеется 85 действующих, строящихся и проектируемых установок мощностью по продукту от 95 до 3340 м /сут. Процесс осуществляется при 32 °С и 0,7—0,8 МПа давление должно быть таким, чтобы сохранить углеводороды и катализатор в жидкой фазе. Получаемый в результате процесса алкилат плотностью 697 кг/м при 20 °С имеет следующий фракционный состав (разгонка ио Энглеру) [4]  [c.62]


    Фракционный состав нефтяных смесей определяется обычна простой перегонкой с дефлегмацией или ректификацией разгонку легких фракций проводят при низких температурах и повышенных давлениях, средних фракций —при атмосферном давлении и тяжелых фракций —в вакууме. Для разгонки используют специальные аппараты Энглера, Богданова, Гадаскина, АРН-2 и др. (описание методик разгонки приведено на стр. 21). [c.18]

    Данные разгонки смеси представляют -в виде таблицы или графика зависимости тем пература выкипания — процент отгона . Линии на этом графике называются кривыми разгонки или кривыми фракционного состава. При четком делении смеси получают кривые истин- Отгон,% [c.19]

    Стандартная разгонка является наиболее быстрым и дешевым методом определения фракционного состава нефтяных фракций, поэтому она получила широкое распространение в практике нефтепереработки. Для определения фракционного состава нефти стандартную разгонку используют редко. Фракционный состав масляных фракций обычно определяется разгонкой по Богданову в кол- [c.24]

    Фракционная разгонка нефти с определением истинных температур выкипания до 200°С проводится при атмосферном давлении и от 200 до 480—500 °С (в пересчете на атмосферное давление) — [c.20]

    Стандартом предусматривается определение температур начала кипения (н. к.), температур выкипания 10, 20, 30, 50, 90 и 98% (об.) и определение массы остатка. При проведении параллельных опытов допускается расхождение температуры начала кипения 4°С и для конечных и промежуточных точек фракционной разгонки 2°С. [c.24]

    При лабораторной перегонке наряду с температурой кипения определяют также такие характеристики дистиллята, как плот НОСТЬ, показатель преломления, температуры затвердевания и плавления, а иногда также молекулярную массу и йодное число (рис. 112). Точную характеристику продукта можно получить, измеряя несколько показателей (особенно при аналитических разгонках). Фракционный анализ дистиллята только по температуре кипения в большинстве случаев приводит к ошибочному заключению [234]. [c.179]

    Отметим, что индивидуальный покомпонентный состав нефтяных смесей определяется методами фракционной разгонки смеси на лабораторной ректификационной колонке с последующим использованием для анализа узких фракций адсорбционной газожидкостной хроматографии, масс-спектроскопии и прочих современных методов анализа сложных смесей. [c.18]


    Типичные кривые стандартной (фракционной) разгонки нефтяных фракций показаны на рис. 1-2 (ом. стр. 19). Установка для стандартной разгонки состоит из колбы без дефлегматора, холодильника и мерного цилиндра. Все размеры аппаратов, объем заливаемой фракции, скорость разгонки и другие параметры строго регламентируются, чтобы обеспечить воспроизводимость параллельных опытов. [c.24]

    Фракционная разгонка состоит в том, что жидкую часть пластового флюида (конденсат, нефть) в лабораторных условиях на стандартных приборах разделяют на отличающиеся по температурам кипения фракции (погоны). [c.22]

    Стандартная разгонка, характеризующаяся сравнительной конструктивной простотой и непродолжительным временем выполнения, используется для определения эксплуатационных свойств нефтепродуктов и для контроля качества продуктов переработки нефти. Кроме того, данные стандартной разгонки часто являются единственным источником информации о фракционном составе нефтепродуктов. В то же время довольно трудоемкая разгонка по ИТК необходима для составления материального баланса процесса и проведения технологического расчета перегонки и ректификации. [c.25]

    Расчет. Определяем характерные температуры кривой фракционной разгонки  [c.31]

    Экспериментальное определение доли отгона и состава образовавшихся фаз при однократном испарении нефтяных смесей является длительной и дорогой операцией. В то же время описанные выше аналитические методы расчета достаточно трудоемки и требуют обязательного применения ЭВМ. Кроме того, отсутствие во многих случаях полных данных по углеводородному составу нефтяных смесей и особенно нефтяных остатков, а также условность дискретизации сложных нефтяных смесей приводит к тому, что более надежным становится зачастую использование эмпирических методов расчета однократной перегонки по данным истиной или стандартной разгонки. Характерное положение кривых фракционного состава и кривых ОИ обеспечивает при этом достаточно высокую точность определения координат точек кривой ОИ на основе эмпирических методов расчета. [c.66]

    Для иллюстрации влияния фракционного состава на микроструктуру авторы в лабораторных условиях подвергли вторичной перегонке образцы среднего и нижнего рафинатов, полученные в промышленных условиях на одном из восточных заводов. При разгонке из испытуемых продуктов было удалено небольшое количество (около 5%) начальных и концевых фракций, чтобы фракционный состав этих продуктов стал более четким, но основные их свойства существенно не изменились. На рис. 3 показаны микрофотографии одного из продуктов до и после обработки. Из рис. 3 видно, насколько сильно влияет на кристаллическую структуру этих продуктов четкость отделения их от более высококипящих фракций. При этом нужно отметить, что в заводской практике четкости фракционировки исходных продуктов, являющихся [c.30]

    По фракционному составу реактивные топлива значительно отличаются друг от друга. Типичные кривые фракционной разгонки представлены на рис. 1. [c.7]

    Следует иметь в виду, что стандартная лабораторная разгонка (ГОСТ 2177-48 и ГОСТ 1529-42) не характеризует истинного фракционного состава сырья, так как применяемые при этом аппараты не обеспечивают четкого погоноразделения. Фактическое содержание легких фракций в дистиллятах больше того их количества, которое обнаруживается при стандартной разгонке. Если, например, начало кипения дистиллята равно согласно стандартной разгонке 200°, то фактическое содержание в данном дистилляте легких фракций, выкипающих до 200°, составляет приблизительно 10% 1. [c.32]

    Сь рье и продукты. На очистку направляют разные по фракционному и групповому составу, а также по содержанию серы и азота тяжелые газойлевые дистилляты, т. е. фракции, извлекаемые при вакуумной перегонке мазутов и имеющие температуру начала кипения 360—400 °С и конца кипения от 520 до 560 °С (в пересчете на атмосферное давление). Нередко тяжелые газойли смешивают с более легкими газойлями, вакуумными или атмосферными (прямогонные дистилляты с температурой начала кипения 230—250 °С и конца кипения около 360 °С). Значение молекулярной массы вакуумных газойлей — смеси фракций от 350 до 500 °С (разгонка по НТК) —. обычно находится в пределах от 310 до 380 "С. [c.53]

    Фракционный состав (разгонка по ГОСТ), °С [c.56]

    Приближенное понятие о фракционном составе нефтей дает разгонка по ГОСТ 2177—66. Однако для большинства практических [c.189]

    Полученные результаты оформляют в виде таблицы или строят кривую фракционной разгонки. По этим данным можно определить среднеобъемную [c.100]

    Состав пластовых флюидов определяется обычно покомпо-пентио до Сз + высшие (Се+или С7 + ). В этот сложный компонент (газовый конденсат) входят жидкие и твердые углеводороды различного строения. Для его характеристики обычно проводят фракционную разгонку, определяют групповой состав, молекулярную массу и плотность. [c.22]


    Зная из опыта кривую фракционной разгонки топлива и его плотность, можно определить многие параметры топлива, в [c.102]

    В ранних работах по изомеризации парафинов применялся лишь один метод анализа, основывавшийся на тщательной фракционной разгонке продуктов изомеризации и определении их физических констант. Циклопарафины представляли специальный случай, где анализ можно было основывать на избирательной дегидрогенизации алкилцикло-гексанов в соответствующие ароматические углеводороды. За последние годы развитие методов инфракрасной спектроскопии и масс-спектро-скопии для полного анализа сложных смесей изомеров оказало необходимую помощь в изучении реакции изомеризации. [c.15]

    Постепенную перегонку можно проводить при постоянной температуре, или давлении. В последнем случае температура жидкости в кубе будет непрерывно повышаться по мере утяжеления остатка. Постепенная перегонка — малоэффективный процесс разделения смесей, поэтому он применяется только для концентрирования компонентов из ширококипящих смесей в дистилляте либо в кубовом остатке. В настоящее время постепенная перегонка широко применяется при определении фракционного состава нефтяных смесей, например при стандартной разгонке. Отметим такл<е, что зaкoнoмepнo tям постепенной перегонки соответствует испарение нефтепродуктов в резервуарах при их хранении. [c.54]

    Разгонка по К. Энглеру практикуется обычно лишь до температуры 300° С, например, для определения фракционного состава бензина и керосина, для более же высококипящих фракций применяется чаще разгонка в вакууме (табл. 16). [c.64]

    С точки зрения упрощения общей схемы и методики переработки искусственных нефтяных газов, наиболее рациональным и удобным представляется предварительное полное разделение их предельной я непредельной части, так как пути их использования коренным образом различаются. Однако отделение предельного углеводорода от олефина с тем же числом углеродных атомов обычными техническими методами затруднительно, так как при фракционировании (разгонка, фракционная сорбция) оба углеводорода, ввиду близости физико-химических свойств, обычно попадают в одну и ту же фракцию. В некоторых случаях эта задача может быть разрешена четкой или сверхчеткой ректификацией, иногда же для выделения олефинов требуется применять специальные химические методы. Однако во многих практических случаях переработки углеводородных газовых смесей нет надобности в предварительном разделении углеводородов разных классов. Такое разделение будет происходить в процессе переработки, и после связывания в определенной химической реакции более реакционноспособных олефинов непрореагировавшие предельпые газы могут использоваться для других процессов. В этих случаях, как правило, желательно фракционирование исходной смеси газов, так как способы переработки углеводородов с различным молекулярным весом могут существенно отличаться друг от друга. [c.275]

    Фракционный состав нефтяных фракций и нефтепродуктов обычно определяется периодической разгонкой их в колбе по ГОСТ 2177—66. Вариантом этого метода является разгонка по Эн-глеру (в американской практике фракционная разгонка нефтяных фракций проводится по методу А5ТМ. Д86—66 [5], практически не отличающемуся аппаратурным и технологическим оформлением от стандартной разгонки по ГОСТ). [c.24]

    Рассмотрим теперь упрощенную методику построения кривых ИТК нефти по данным о выходе продуктов перегонки, их фракционном составе по стандартной разгонке и температурным точкам деления [10]. Такая методика позволяет оперативно оценивать возможные изменения фракционного состава нефти, поступающей на переработку. Она основана на допущении о равенстве температур 50% отгона каждого продукта по ИТК и по стандартной разгонке. Обозначив через А, В, С и т. д. выходы дистиллятов, полученных из нефти, и температуры 50% отгонов этих фракций по стандартной разгонке через /д, tв, Ьс и т. д., получим следующие координаты расчетных точек кривой ИТК первая точка — температура 7д, выход Л/2 вторая точка —температура /г, выход Л+В/2 третья точка — температура /с, выход Л+В+С/2 и т. д. Учитывая, что температура 507о отгона наиболее тяжелого дистиллята, относящегося к светлым нефтепродуктам, не нре-вышает 280—295 °С, расчетную точку кривой ИТК, соответствующую выходу фракции до 350 °С, рекомендуется определять интерполяцией кривой ИТК по ее, наклону в пределах температур /с—/ . [c.27]

    Третья часть программы осуш,ествляет выдачу на печать результатов расчета, а также вычисление дополнительных показателей качества нефтепродуктов. Например, по специальным программам кривые ИТК пересчитываются в кривые фракционной разгонки, определяются основные характеристики четкости ректификации, температуры вспышки и кристаллизации дизельных топлив, октановые числа бензинов и т. д. [c.89]

    Во второй половине 1962 г. одна из реконструированных советских трубчаток была пущена в эксплуатацию. Производительность ее стала на 40% больше, чем до реконструкции. Однако погоноразделительная способность ректификационных колонн этих установок пока еще не обеспечивает получения дистиллятов нужного фракционного состава. Наблюдается налегание соседних фракций по температурам разгонки. Так, при конце кипения бензина 180—195 °С начало кипения керосина равно 152—158 °С, т. е. налегание составляет 22—43°С конец кипения керосина равен 282—290°С, а начало кипения дизельного топлива 218—230 °С, т. е. при этом налегание фракций составляет 52—72 °С. Не обеспечивается полный выход (от потенциала) компонентов светлых. Недоизвлечение легких фракций (преимущественно дизельных топлив) достигает 5— 7% на нефть. [c.73]

    Гвдрообессеривание нефтяных остатков — процесс сложный и дорогой. Однако он является радикальным методо] снижения содержания серы, металлов, асфальтенов. Наряду с этим значительно уменьшается коксуемость, вязкость, шютность. Облегчается фракционный состав. Непосредственно из гидрогенизата, после соответствующей стабилизащш, получается малосернистое котельное топливо. При разгонке гидрогенизата может быть получен определенный ассортимент продуктов. Компоненты бензина и дизельного топлива после дополнительного облагораживания вовлекаются в товарные продукты. Остаток выше 350 °С или вакуумный отгон от него может быть, использован в качестве сырья для каталитического крекинга или гидрокрекингу в ряде схем утяжеленный остаток используется как сырье для замедленного коксования в основном с целью получения высококачественного нефтяного кокса. [c.177]

    Авиаалкилат плотностью при 20 С 698—715 кг/м и автоалкилат имеют следующий фракционный состав (разгонка по ГОСТ 2177—66), °С  [c.60]

    Фракционный состав и испаряемость карбюраторных топлпв определяют стандартной разгонкой по ГОСТ 2177 — 59. При определении фракционного состава бензинов фиксируют температуры начала кипения (н. к.), выкипания 10, 50, 90 и 97,5 объемн. %ц конец кипения (к. к.). Температура выкипания 10 объемн. % топлива характеризует его пусковые свойства при низких температурах и склонность к образованию газовых пробок в системе подачи г )рю-чего. Эта температура равна 75—88° С для авиационных и 70—79 С [c.127]

    Аппарат для определения фракционного состава АРН-2 (рис. 126) (по методу ГОСТ 11011—64) позволяет производить фракционирование нефти и нефтепродуктов при атмосферном давлении и в вакууме. Состоит из кубика с алектрообогревом 2, ректификационной колонны с насадкой из нихромовых проволочных спиралей 4, конденсатора-холодильника 6, двух приемников 5, вакуумного насоса 10, вспомогательных емкостей и измерительных приборов. Система кранов на трубках, соединяющих отдельные элементы аппарата, позволяет регулировать остаточное давление при вакуумной разгонке и выводить из системы отдельные отогнанные фракции. [c.74]

    Фракционным составом нефтепродуктов aзывaют содержание в них тех или иных фракций (выраженное в объемных или массовых процентах), выкипающих при перегонке этих продуктов в заданном интервале температур. Фракционный состав топлив обычно определяют на стандартном аппарате для разгонки нефтепродуктов по ГОСТ 2177—82. [c.99]

    Далее, при тщательной фракционной разгонке бензина м ожно выделить фраищии, имеющие весьма высокое самообразование, наряду с другими фракциями с малым смолообразованием. Присутствие таких фракций в смеси значительно помогает ысокому в конечном счете общему образованию см ол. [c.312]

    Одной из первых операций, связанных с определением фракционного состава нефти, является определение количества и состава ]застворенных в ней углеводородных газов. Для отделения последних сырую нефть в течение 3—4 ч подогревают до 150 —200° С в аппарате ИТК для разгонки нефти. Несконденсировавшиеся газы и легкую головную фракцию углеводородов отбирают раздельно газ т газометр, головную фракцию в колбу, погруженную в баню со льдом. По окончании перегонки подсчитывают выход этих продуктов в весовых процентах и затем перегоняют в аппарате низкотемпературной ректификации. [c.114]

    Для построения кривых ОИ нефтей и нефтяных фракций по данным фракционной разгонки сырья без ректификации (ASTM, Энглера) можно использовать также метод Ван-Виккля. Сущность этого метода заключается в следующем. По данным фракционной разгонки исходного продукта определяют так называемую неисправленную температуру отгона по кривой ОИ. Для этой цели используют следующее эмпирическое уравнение  [c.229]

    Г — кривая фракционной разгонки 2 — кривая ОИ при атаосферном давлении  [c.230]


Смотреть страницы где упоминается термин Разгонка фракционная: [c.19]    [c.217]    [c.27]    [c.62]    [c.481]    [c.200]    [c.229]   
Лабораторные работы по химии и технологии полимерных материалов (1965) -- [ c.43 ]

Технический анализ продуктов органического синтеза (1966) -- [ c.32 ]




ПОИСК





Смотрите так же термины и статьи:

Разгонка



© 2024 chem21.info Реклама на сайте