Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Квантовый выход полный

    Важными характеристиками фотохимической реакции являются квантовый выход первичной фотохимической реакции и полный квантовый выход фотохимического процесса. Квантовый выход первичной фотохимической реакции у1 есть отношение числа прореагировавших возбужденных молекул в первичной фотохимической реакции к числу поглощенных квантов. Видимо, у, не может быть больше единицы. Полный квантовый выход фотохимического процесса у есть отношение числа образовавшихся в результате процесса молекул к числу поглощенных квантов. Полный квантовый выход фотохимического процесса может быть меньше и много больше единицы. Так, в результате взаимодействия На с СЬ полный квантовый выход достигает 10 молекул НС1 на один поглощенный квант (А. =400 нм). Полный квантовый выход в реакциях, протекающих в растворах, обычно меньше единицы. Так, полный квантовый выход фотохимической реакции разложения щавелевой кислоты в водном растворе равен [c.612]


    Пример 3. Фотохимическое разложение бромистого водорода под действием света с длиной волны 2530 А при 25° может быть описано следующими реакциями. При первичном процессе молекула распадается на атомы водорода и брома, которые вступают в дальнейшие реакции. Квантовый выход первичного процесса иногда обозначается буквой 9, квантовый выход полной реакции обозначается Ф, а интенсивность поглощенного света — I [c.696]

    Когда же применяемые длины волн лежат в области спектра одного определенного характера, зависимость квантового выхода от длины волны или ие имеет места, или выражена лишь в слабой степени.Одним из примеров может служить разложение иодистого водорода 2HJ = Ja. где из.менение длины полны фотохимически активного света от 2820 до 2070 А, т. ( . в пределах 7,50 Л, практически не влияет па величину квантового выхода. [c.158]

    Эти эффекты находятся в качественном согласии с простой теорией движения в вязкой среде нри условии полного исключения влияния клеточных эффектов. Предполагают, что избыточная энергия кванта но сравнению с энергией, необходимой для диссоциации, проявляется как кинетическая энергия двух атомов иода, удаляющихся в противоположных направлениях, и что атомы иода в результате торможения, обусловленного вязкостью растворителя, останавливаются на расстоянии, зависящем от величины избытка энергии и от вязкости. Количественное согласие неполное, как и следовало ожидать, поскольку при расчете игнорировались клеточные эффекты. Расхождение действительно можно объяснить на основе клеточной модели. Например, предсказанный квантовый выход слишком высок для больших длин волн и слишком низок для более коротких. Это позволяет думать, что если удаляющиеся атомы иода имеют малую скорость, то они возвращаются друг к другу клеткой растворителя, если же они имеют высокую скорость, то они расходятся так далеко, что молекулы растворителя оказываются между ними и препятствуют рекомбинации. Итак, по-видимому, наше представление о реакциях, лимитируемых диффузией, здесь необходимо изменить так, чтобы учесть эффекты близости , обусловленные клеткой растворителя. Реакции, лимитируемые диффузией, рассмотрены в гл. 12 (стр. 279 и сл.). [c.148]

    М — некоторая молекула, которая может отводить энергию, освобождающуюся в реакции (4). Полный квантовый выход Ф был найден из суммарной скорости исчезновения О3 —(1[0з]сИ = Ф/д. [c.144]

    Поглощение свободными носителями заряда. Это поглощение происходит за счет изменения полной энергии носителей в пределах одной и той же зоны. Оно имеет место в широком интервале частот падающего света, начиная с очень небольших значений частоты. Поглощение свободными носителями не связано с изменением их концентрации и потому не может привести к существенному изменению удельной проводимости данного полупроводника. Коэффициент поглощения в данном случае обратно пропорционален квадрату частоты падающего на кристалл света. Поэтому при больших частотах, когда происходит образование электроннодырочных пар, поглощение свободными носителями невелико и практически не оказывает влияния на величину квантового выхода р. [c.151]


    Величина отношения полного квантового выхода к первичному (Ф/ф) аналогична понятию кинетической длины цепи v, используемому при исследованиях термических цепных реакций. Эта величина может быть выражена также через константы скоростей вторичных реакций, и в этом случае ее изменение в зависимости от концентрации различных частиц может служить подтверждением гипотетического механизма реакции и давать оценку констант скоростей. [c.20]

    В количественном анализе используют зависимость интенсивности люминесценции от концентрации определяемого вещества. При использовании реакции образования люминесцирующего соединения необходимо обратить внимание на наиболее полное переведение определяемого компонента в соединение, обладающее люминесценцией. В количественном анализе большое значение имеет квантовый выход чем он больше, тем меньшие количества вещества можно обнаружить. [c.360]

    Для более полной характеристики превращения возбуждающего света в люминесцентную эмиссию необходимо пользоваться не только квантовым выходом, но и энергетическим выходом. Последний показывает отношение энергии люминесценции к энергии поглощенного света Е , т. е. энергию выхода  [c.162]

    Генерирование свободных радикалов, необходимых для инициирования полимеризации, чаще всего достигается путем использования специальных веществ, инициаторов, сравнительно легко подвергающихся гемолитическому распаду под влиянием тепла или света. Активация мономеров без участия посторонних агентов возможна только при радиационном инициировании, поскольку в условиях полного отсутствия кислорода большинство из них не обнаруживает склонности к полимеризации даже при температуре выше 100 С. Исключение составляет лишь ограниченное число соединений, например стирол и, в гораздо меньше степени, метилметакрилат. Фотополимеризация в отсутствие инициаторов также является весьма медленным процессом с очень низким квантовым выходом, который в редких случаях, в частности для акрилатов, доходит до 0.1 обычное его значение 10 —10 . [c.205]

    Диазониевые если. Ароматические диазониевые соли гидролизуются до соответствующих фенолов с выделением азота при облучении их растворов в воде или очень разбавленной серной кислоте 1170—174]. Е> разбавленном растворе побочные реакции играют обычно незначительную роль и длительное облучение может привести к полному разложению с выделением почти теоретических количеств свободного азота. При действии излучения с длиной волны 3650 A получаются квантовые выходы порядка 0,2—0,7 [174, 175]., [c.264]

    Хотя квантовые выходы образующихся продуктов и не определены, однако можно считать, что происходит полное разложение диазониевой соли. При использовании в качестве растворителя изопропилового спирта образование эфира почти полностью подавляется и выходы углеводорода или замещенного углеводорода достигают 40—90%. [c.264]

    Полный квантовый выход можно записать так [c.51]

    В первой четверти XX столетия цепная теория в основном была предназначена для объяснения реакций с большим квантовым выходом (работы Боденштейна и Габера). В основу этого объяснения был положен механизм с дискретным элементарным актом передачи полной свободной валентности  [c.16]

    В соответствии со вторым законом фотохимии — законом фотохимической эквивалентности (Штарк и Эйнштейн)— каждая молекула, участвующая в химической реакции, происходящей под действием света, поглощает один квант лучистой энергии, который вызывает реакцию. В дальнейшем Штарк и Боденштейн [164, 3861 показали, что этот закон применим только к первичным фотохимическим процессам, поскольку вторичные цепные реакции могут приводить к тому, что полный квантовый выход (отношение числа прореагировавших молекул к числу поглощенных квантов) будет значительно больше единицы (например, в реакции хлора с водородом в газовой фазе полный квантовый выход составляет 10 —10 ). Поэтому согласно второму закону фотохимии каждый поглощенный фотон, или квант света, в первичном акте способен активировать только одну молекулу. Это значит, что поглощение света — одноквантовый процесс, и квантовый выход первичного процесса равен единице. [c.22]

    Полный квантовый выход продукта фотохимической реакции является одной из главных ее характеристик. Число прореагировавших молекул, соответствующее количеству продукта реакции, определяют методами химического анализа. [c.23]

    Часто довольно трудно доказать, что данный продукт образовался в первичном фотохимическом процессе, а также установить природу возбужденного состояния и оценить квантовый выход возбужденных молекул и свободных радикалов. Иногда даже точного анализа всех продуктов фотохимической реакции и знания их квантового выхода недостаточно для полного установления природы и эффективности первичных процессов. [c.23]


    Фотолиз Оз изучался при различных условиях [65, 141, 142], но полученные результаты не так полны и не так достоверны, как в случае пиролиза. При облучении красным светом [141] оказывается, что результаты соответствуют данному механизму, за исключением очень высоких отношений (0з)/(02), для которых квантовый выход, по-видимому, медленно повышается. С другой стороны, довольно значительная темновая реакция при низких температурах вместе с гетерогенной реакцией и катализом делает эти измерения довольно сомнительными. Хейдт [65] нашел очень высокий квантовый выход (около 6) в относительно концентрированном Оз при коротких длинах волн (< 2500А) это может быть доказательством цени, обусловленной электронновозбужденными состояниями О2, которые могут образовываться при этих коротких длинах волн. [c.352]

    Поэтому величина квантового выхода в данной работе определяется в лучшем случае (т. е. при соблюдении постоянства напряжения на источнике света, перпендикулярности луча к поверхности склянки, полного попадания его в раствор, пр 1 ильиого перемешивания раствора, постоянства температуры, предохранения раствора от неучтенного действия света и т. п.) с точностью до 25— 30%. При неаккуратности в работе возможны погрешности в 100% и более. При этом можно найти только порядок величины ф. [c.275]

    Для определения полного квантового выхода химической реакции необходимо измерить число прореагировавших исходных молекул или молекул, образовавшихся в результате реакции, и количество поглощенных квантов излучения. Если в первом случае требуется лишь привлечение подходящего аналитического метода, то в последнем необходим метод измерения абсолютного числа фотонов. Экспериментальные способы проведения таких абсолютных измерений описаны в гл. 7. При определении первичного квантового выхода необходимо прежде всего исключить или оценить вклад вторичных реакций и определить абсолютные эффективности излучательных и безыз-лучательных потерь энергии. Однако не всегда возможно даже установить, какой именно процесс является первичным, так что полное описание первичных процессов в терминах квантовых выходов может быть сделано лишь в особо благоприятных случаях. Тем не менее некоторые соображения могут быть использованы при определении первичного процесса. Так, при рассмотрении спектра поглощения можно предположить электронную конфигурацию возбужденного состояния и, следовательно, возможные механизмы распада. Детектируя промежуточные частицы (возбужденные состояния или атомы и ради- [c.19]

    Поглощение излучения на синглет-триплетном переходе мало, поскольку он запрещен в такой же степени, как запрещена фосфоресценция на триплет-синглетном переходе. Следовательно, возбуждение верхнего фосфоресцирующего уровня непосредственно из основного является неэффективным, гораздо чаще фосфоресценция возникает в результате радиационного распада триплетных уровней, заселяемых безызлучательными переходами с синглетных уровней, возбуждаемых поглощением из основного состояния. Диаграмма последовательности событий показана на рис. 4.1. В результате поглощения заселяется уровень Si" после быстрой релаксации (по крайней мере в конденсированных средах) по колебательным уровням молекула оказывается на уровне Si°, где она может потерять энергию либо за счет излучения (фосфоресценции), либо в результате безызлучательного перехода на уровень T l — интеркомбинационной конверсии (IS ), либо в результате безызлучательного перехода на уровень — внутренней конверсии (1 ). Возможно, это может показаться странным, что ISG на уровень Ti , являющийся запрещенным по спину согласно правилам отбора для безызлучательных переходов, может эффективно конкурировать с разрешенной по спину флуоресценцией или внутренней конверсией на So " однако фосфоресценция наблюдается во многих случаях, когда можно предположить, что 1 5i 5o относительно неэффективна. Для полного понимания процессов фотохимии молекул необходимо знать эффективность (квантовый выход) всех процессов, происходящих в ней. Даже если возбужденные частицы не вступают в химические реакции, не подвержены процессам разложения или тушения, то необходимо уметь определять квантовый выход флуоресценции ((pf), фосфоресценции (фр), интеркомбинационной конверсии " So (fis ) и внутренней конверсии 51 5о(ф1с). Учитывая, что суммарная эффективность всех процессов равна единице, получим [c.84]

    Для измерений малых интенсивностей света (<5-10 эйнштейн-с ) в области длин волн 250— 330 нм хорошим актинометром является спиртовый раствор лейкоцианида малахитового зеленого, подкисленный соляной кислотой до pH 2. При фотолизе лейкоцианида малахитового зеленого образуется окрашенный ион, который стабилен в кислом спиртовом растворе и имеет максимум поглощения при Я = 620 нм. Концентрация раствора выбирается такнм образом, чтобы поглощение его в кювете на актииометрируемой длине волны было полным. Определенный объем V актинометра помещают в кювету и подвергают фотолизу в течение различных промежутков времени. Время облучения выбирается так, чтобы оптическая плотность при Я = 620 нм не превыщала 0,15, поскольку образующиеся ионы поглощают ультрафиолетовый свет и могут действовать как внутренний фильтр. Это приводит к заниженным результатам. После облучения измеряют оптическую плотность при 1 = 620 нм и строят график ее зависимости от времени фотолиза. Интенсивность света определяют по формуле (5.34), где V — объем облучаемого раствора актинометра О — оптическая плотность в максимуме поглощения красителя нри Х = 620 нм е — коэффициент экстинкции иона при 620 нм, равный 9,49-10 М" -см Ф — квантовый выход фотолиза, равный 1. [c.259]

    S — площадь, на к-рую падает свет, Ф — квантовый выхо.т распада актинометрич. в-ва, запнсящин от длины полны падающего света (табличная величина). Квантовый выход [c.20]

    ОПТИЧЕСКИ ОТБЕЛИВАЮЩИЕ ВЕЩЕСТВА (оптические отбеливатели), бесцветные флуоресцирующие орг. соед., напр, производные стильбена, оксазола, имидазола, поглощающие УФ излучение (X 300—400 нм) и преобразующие его в видимое, преимущественно фиолетовое и голубое (X 400—500 нм). О. о. в. должны флуоресцировать с высоким квантовым выходом, излучать в той же области спектра, в к-рой поглощают содержащиеся в отбеливаемом субстрате загрязнения, и равномерно распределяться в субстрате, не образуя крупных мол. агрегатов, снижающих эффект белизны. Подобно красителям, О. о. в. должны обладать хим. сродством к субстрату (иногда их называют белыми красителями). В отличие от красителей, для них, однако, существует оптимум концентрации, превышение к-рого приводит к ослаблению или даже полному подавлению флуоресценции. На эффективность О. о. в. влияют также отражат. способность субстрата (особенно в ближней УФ области) и содержащиеся в нем в-ва, способные поглощать УФ излучение или гасить флуоресценцию (напр., соли тяжелых металлов). [c.412]

    Числитель определяется экспериментально путем химического анализа, значение знаменателя можно найти, измеряя полную энергию поглощенного света длины волны Я и принимая во внимание, что энергия каждого кванта равна /IV или к с/к. В разных реакциях значение Ф колеблется от 0,00 до 10 . Для многих реакций квантовый выход равен единице. Это означает, что каждая молекула, поглотивщая свет, испытывает химическое превращение. Излучение распространяется в пространстве дискретными порциями — квантами или фотонами. В фотохимии используют свет с длинами [c.51]

    Характерный пример зависимости квантового выхода от длины волны мы имеем в случае фотохимического разложения двуокиси азота NO2. В этом случае в области больших длин волн наблюдается флуоресценция, яркость которой уменьшается при уменьшении длины волны При it<4100 А флуоресценции нет. Параллельно с ослаблением флуоресценции квантовый выход реакции разложения NO2 растет от нуля в области больпшх длин волн до значения г = 2 — в области малых длин волн. Так, при одинаковых коэффициентах поглощения в области спектра вблизи К 4360 и X 3660 Л в первой, более длинноволновой области, происходит возбуждение молекулы NO2 при равенстве нулю квантового выхода, а во второй — фотодиссоциация при полном отсутствии флуоресценции, в результате чего квантовый выход равен максимальной ве личине 2 (см. стр. 383). Заметим, что в отличие от рассмотренных выше случаев молекул I2, Вг2, J2, в спектре поглощения NO2 нет области сплошного поглощения. Однако вблизи К 4100 А в спектре NO2 лежит граница предиссоциации. Наличие области предиссоциации и обусловливает фотохимическое разложение молекул NO2 в коротковолновой области спектра, приводящее к т] = 2. [c.384]

    Из сопоставления приведенных в табл. 50 ионных выходов с квантовым выходом соответствующих реакций, далее, следует, что квантовый выход практически во всех случаях оказывается меньше ионных выходов. Главная причина этого различия, несомненно, заключается в том, что, наряду с ионами, под действием проникающих излучений возникают также возбужденные молекулы, представляющие собой одну из форм химически активных частиц в условиях протекания радиациоиио-химичсской реакции. Другими словами, ионный выход не служит полной характеристикой активирующего действия проникающего излучения. [c.467]

    Развитие представлений о природе и кинетике ценных реакций прошло за последние пятьдесят лег через три ярко выран енные стадии. Первая началась с открытия Боденштейном [1] в 1913 г. фотохимических неразветвленных цепных реакций с большим квантовым выходом в 1916 г. это открытие было развито Нерпстом [2] и применено к термическим реакциям в 1923 г. Христиансеном и Крамерсом [3]. Вторая стадия заключалась в развитии представлений о разветвленных цепных реакциях в работах Семенова [4] в 1927 г. и несколько позднее в работах Хиншельвуда [5] 11 о вырожденно-разветвленных цепных реакциях в работе Семенова [6] в 1931 г. Эти авторы дали математическое обоснование взрывных и псевдовзрывных процессов, которое исключительно полно объясняет самые разнообразные случаи. Однако оно не дает никаких сведений о химической природе активных центров или о реакциях инициирования, распространения, разветвления и обрыва цепей третья стадия заключается в рассмотрении этих реакций с точки зрения конкретных промежуточных продуктов, и все вместе привело к окончательному описанию механизма всей реакции в целом, во всех ее различных проявлениях. [c.559]

    При полном отсутствии кислорода скорость присоединения брома к коричной кислоте в четыреххлористом углероде на холоду слишком велика, для того чтобы можно было ее измерить з. Даже небольшое количество кислорода заметно замедляет реакцию . Как видно из табл. 19, квантовые выхода фотобромиро-вания меняются обратно пропорционально концентрации кислорода, хотя они растут почти прямо пропорционально t повышением концентрации брома. [c.195]

    Незначительная подвижность образующихся ири Ф. макрорадикалов обусловливает их высокую стационарную концентрацию даже при относительно небольших дозах облучения (накопление макрорадикалов во времени легко контролируется методом ЭПР). В нек-рых случаях разрыв цепи сопровождается деполимеризацией макрорадикалов с образованием мономера. Вероятность этого процесса возрастает с темп-рой. При темп-рах, близких к предельной темп-ре полимеризации, кажущийся (эффективный) квантовый выход образования мономера может достигать нескольких тысяч. Это обусловлено тем, что отщепление молекулы мономера от активного центра — темновая цепная реакция. Во многих случаях одновременно с Ф. возможны и др. процессы сшивание, различные превращения в боковых группах (вплоть до их полного отщепления), образование системы сопряженных двойных связей в основной цепи, г ис-тракс-изомеризация и др. Во вторичных (темиовых) реакциях могут участвовать функциональные группы тех же или др. Л1акромолекул, а также примесей. Эти реакции сопровождаются передачей энергии возбуждения или свободной валентности на макромолекулы, фотонревращениями радикалов и т. д. [c.380]


Смотреть страницы где упоминается термин Квантовый выход полный: [c.380]    [c.19]    [c.20]    [c.69]    [c.253]    [c.261]    [c.262]    [c.412]    [c.94]    [c.612]    [c.664]    [c.181]    [c.51]    [c.53]    [c.140]    [c.119]    [c.122]    [c.53]   
Молекулярная фотохимия (1967) -- [ c.14 ]




ПОИСК





Смотрите так же термины и статьи:

Квантовый выход



© 2025 chem21.info Реклама на сайте