Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диэлектрические пластификаторов

    Фенантрен рассматривался как потенциальное сырье для синтеза фталевого ангидрида [85]. Однако из-за низких выходов последнего (60%) фенантрен не может конкурировать с нафталином и о-ксилолом. Внимание исследователей уделялось продуктам окисления фенантрена — дифеновой кислоте и получаемому из нее дифеновому ангидриду. Дифеновая кислота используется в тех же направлениях, что и фталевый ангидрид [158] . Изделия из стеклопластиков, связанные ненасыщенными полиэфирами, модифицированными дифеновой кислотой, обладают более высокой механической прочностью, большей термической и химической стойкостью [159]. Сложные эфиры дифеновой кислоты могут стать перспективными пластификаторами, превосходящими в силу малой летучести и лучших диэлектрических характеристик соответствующие фталаты [128, с. 122]. Возможность использования дифеновой кислоты вместо фталевого ангидрида определяется экономикой, а последняя — возможностью получения дешевой дифеновой кислоты. [c.105]


    Существенное влияние на релаксационные диэлектрические потери оказывает также пластификация полимеров. С ростом концентрации пластификаторов в полимере время релаксации, как правило, уменьшается, а область максимума дипольно-сегментальных потерь сдвигается в сторону низких температур, поскольку пластификация, как правило, существенно снижает температуру структурного стеклования. [c.248]

    Пластификаторы также влияют на диэлектрические потери поливинилхлорида. Их влияние сказывается в том, что максимум угла потерь у пластифицированного поливинилхлорида резко сдвигается в сторону низких температур (рис. 40). Это объясняется тем, что температура перехода из стеклообразного (твердого, хрупкого) в высокоэластическое со- [c.130]

Рис. 40. Влияние пластификатора на тангенс угла диэлектрических потерь поливинилхлорида Рис. 40. <a href="/info/718141">Влияние пластификатора</a> на тангенс угла <a href="/info/56935">диэлектрических потерь</a> поливинилхлорида
    Пластикат наряду с высокими диэлектрическими по-каз-ателями обладает морозостойкостью. Он широко применяется в качестве электроизоляционного материала. Паста из поливинилхлорида, приготовляемая смешением тонкодисперсного поливинилхлорида с пластификатором и последующим растиранием смеси на вальцах, широко применяется для изготовления плащей, галош, обуви, искусственной кожи, клеенки, линолеума и др. [c.387]

Рис. 100 Диэлектрические постоянные поливинилхлорида с добавлением пластификатора дифенила (цифры у кривых указывают процент дифенила) Рис. 100 <a href="/info/821597">Диэлектрические постоянные поливинилхлорида</a> с добавлением <a href="/info/921473">пластификатора дифенила</a> (цифры у кривых указывают процент дифенила)
    Сведения о таких физических свойствах пластификаторов как дипольный момент, термический коэффициент линейного расширения, диэлектрическая проницаемость очень ограничены (см. табл. 3.15). Информация о различных формах теплового расшире- [c.93]

    Метод диэлектрической спектроскопии. Изучение совместимости можно проводить с помощью диэлектрической спектроскопии. На основании сравнения диэлектрического спектра рассеяния пластификаторов с соответствующим спектром пластифицированной композиции можно сделать выводы относительно предела совместимости [45]. [c.144]


    Увеличение содержания пластификатора в составе полимерной композиции, приводящее к повышению гибкости цепей полимера, способствует росту подвижности отдельных его звеньев [334], вызывая понижение удельного объемного диэлектрического сопротивления и повышение максимального значения тангенса угла диэлектрических потерь [311, 334]. Высокое удельное объемное электрическое сопротивление пластификатора не является достаточным условием для получения пластифицированного материала, также обладающего высоким удельным объемным электрическим сопротивлением. Согласно данным работы [335], единственным удовлетворительным методом определения пригодности пластификатора для получения пластифицированных полимеров с определенным комплексом диэлектрических свойств является оценка диэлектрических характеристик конечного материала. В этом случае четко проявляется специфика отдельных типов пластификаторов [311, 336—338]. [c.177]

    Совершенно исключительной является химическая стойкость политетрафторэтилена, превосходящая стойкость всех других синтетических материалов, специальных сплавов, керамики и даже благородных металлов — золота и платины. Все разбавленные и концентрированные кислоты, в том числе, царская водка , расплавленные щелочи и окислители не действуют на политетрафторэтилен даже при высоких температурах. Только расплавленные щелочные металлы, трехфтористый хлор и фтор оказывают некоторое действие, проявляющееся лишь при высокой температуре. Полимер нерастворим и даже не набухает ни в одном из известных растворителей или пластификаторов за исключением фторированного керосина. Физико-механические и диэлектрические свойства фторопласта-4 приведены на стр. 121. [c.117]

    Введение в эпоксидные полимеры пластификаторов и в меньшей степени флексибилизаторов ухудшает диэлектрические характеристики компаундов. При этом, как уже отмечалось, сильно увеличиваются диэлектрические потери и максимум диэлектрических потерь смещается в сторону низких температур. Электрическое сопротивление и электрическая прочность также снижаются при увеличении содержания пластифицирующих добавок. [c.159]

    ВЛИЯНИЕ ПЛАСТИФИКАТОРОВ НА ДИЭЛЕКТРИЧЕСКИЕ СВОЙСТВА ПОЛИМЕРОВ [c.441]

    Применение хлорированных парафинов в качестве пластификатороа для поливиниловых пластмасс стало возможным лищь после того, как удалось найти высокоэффективный стабилизатор, а применение хлорированных парафинов в качестве пластификатора для полихлорвинила известно уже давно. Вследствие своей дещевизны, превосходных диэлектрических свойств и огнестойкости хлорированные парафины давно применяли как добавки к виниловым смолам. Практическое применение их стало возможным, когда были открыты превосходные стабилизирующие свойства двуосновного фосфата свинца (дифос), в результате чего продукты, содержащие хлорированный парафин в качестве пластификатора, в настоящее время находят применение в качестве электроизоляционных материалов [267]. [c.255]

    Однако это уравнение отражает рассматриваемую зависимость лишь в суммарной форме. В действительности эти с оотношения являются более сложными. Релаксация в той илн другой степени относится ко всем формам перемещения частиц в материале, но скорость релаксации их в данном полимере при одинаковых вйешних условиях может различаться в сильной степени. Перемещения электронов практически не задерживаются, перемещения же атомов и атомных групп и изменения их колебательного движения задерживаются в различной степени в зависимости от их массы и характера связи, а также степени связанности их с другими частицами. Это существенно влияет на диэлектрические свойства полимеров. То же относится и к перемещениям или изменениям конформации отдельных звеньев цепей и макромолекулы в целом, причем последние сильно зависят от степени полимеризации и от строения цепей. При повышении степени полимеризации скорость релаксации уменьшается. Еще больше усложняются эти соотнощения в полимерах, содержащих структурные единицы, различные по составу и строению, т. е. в сополимерах, привитых полимерах и пр. В общем существует некоторый комплекс времен релаксации, характеризующий различную скорость релаксации разных форм перемещения частиц в данном полимере. Кроме того, из внешних условий на скорость релаксации существенно влияет давление. При повышении давления увеличивается напряжение и соответственно уменьшается время релаксации. Это широко используется на практике при формовании изделий из полимерных материалов. Время релаксации зависит также от присутствия в полимере других веществ. Так, на введении в полимер специальных пластификаторов основан один из методов увеличения скорости релаксационных процессов. [c.581]


    Важным потребителем толуола стало производство синтетических крезолов [19, с. 63—78]. Потребность в крезол ах определяется производством ядохимикатов из о-крезола для сельского хозяйства (отличающихся высокой селективностью по сравнению с ядохимикатами на основе фенола) и лаковых фенольных смол (отличающихся высокой эластичностью) л1-крезол является сырьем для ряда ядохимикатов, нетоксичных для человека и тепло- кровных животных л-крезол служит основным сырьем для массового производства нетоксичных и неокрашивающих антиоксидантов (ионола и антиоксиданта 2,2,4,6) наконец, смесь л -кре-зола (50—60%) и -крезола — так называемая дикрезольная фракция — служит сырьем для крезолоальдегидных смол и три-арилфосфатов. Крезолоальдегидные отличаются от фенолоальдегидных смол большей термо- и водостойкостью, лучшими адгезионными и клеющими свойствами, лучшими диэлектрическими показателями. Нетоксичные триарилфосфаты используют как пластификаторы и антипирены для изготовления ряда полимерных материалов и, в первую очередь, поливинилхлорида. [c.73]

    Основными недостатками винипласта являются невысокая теплостойкость и низкая 5 даропрочность. С увеличением содержания пластификатора повышается морозостойкость материала, но понижается его механическая прочность и ухудшаются диэлектрические свойства. [c.606]

    Введенные в полимер пластификаторы оказывают влияние па все его физико-механические свотетва (прочность, эластичность, хрупкость, диэлектрические пoтep r, температуру стекловаиия и текучести и т. Д.). [c.435]

    Влияние пластификаторов на диэлектрические свойства поликеров 441 [c.441]

    Применение полимеров в качестве изоляционных материалов обусловлено их высоким электрическим сопротивлением, низкой ДIi-электричес1<ой проницаемостью, малыми диэлектрическими потерями и стойкостью к действию высоких напряжении (глава XI), Введение пластификаторов, как Правило, ухудшает все эти характеристики. Так, введение 11ла-стификатора в полимер вследст- [c.441]

    Пластификаторы влияют и на диэлектрические свойства по-тимеров. Как правило, введение пластификаторов ухудшает диэлектрические характеристики. Изменение диэлектрической проницаемости и максимума тангенса у1ла диэлектрических потерь tg6 зависит от полЯ[)НОСти пластификатора и его термодинамической совместимости с полимером. Ьсли пластификатор истинно растворим в полимере, то tg6нaк смещается в область более низких те-миератур При этом абсолютные значения 1 6 и днэлектрнческой проницаемости е зависят от полярности пластификатора, т. е, от сто собственной диэлектрической проницаемости. При введении неполярных пластификаторов, диэлектрическая проницаемость которых мала, е и пластифицированного полимера уменьшаются, а введение полярных пластификаторов может привести к возрастанию этих показателей. [c.420]

    В полярных полимерах — поливинил ацетате, полиметил метакрилате и др. (/ 0=0,02—0,03) дипольные группы стремятся следовать за изменениямш поля, но время релаксации Г колебаний зависит от вязкости среды, температуры, наличия пластификатора, размера поворачивающегося участка цепи и т. п. При очень низкой частоте поля по сравнению с т все дипольные группы следуют за полем, что соответствует наибольшему значению диэлектрической постоянной г среды напротив, при очень высокой частоте поля все дипольные rpynribi заторможены, что соответствует минимальному значению г. Кривые, выражающие изменение с частотой поля, называются кривыми диэлектрической дисперсии перегиб кривых дисперсии соответствует времени релаксации т в этой же области ///о имеет. наибольшие значения. Другой тип кривых диэлектрической дисперсии можно получить при постоянной частоте поля изменением те1мпературы в этом случае перегибы кривой соответствуют темшературе стеклования Т . Например, из рис. 100 видно, что при добавлении возрастающих количеств пластификатора дифенила к поливинилхлориду (при постоянной частоте поля 60 колебаний в 1 сек.) кривые г и положение смещаются в область более низких температур. Электрическими методами легко проводить изме- [c.252]

    Поливинилацетали и поливинилкетали применяются для получения пленочных материалов, клеев и лаков, модифицированных другими полимерами, пластификаторами, обладающих хорошими диэлектрическими свойствами. [c.180]

    Широкое использование материалов на основе ПВХ объясняется их эксплуатационными свойствами, большим ассортиментом применяемых для изготовления изделий композиций, в которых наряду с основным компонентом ПВХ входят стабилизаторы, пластификаторы, наполнители, модификаторы, красители и другие вещества. Количество входящих в состав композиции компонентов может достигать достигать до 500 мае. ч. на 100 мае. ч. ПВХ. Этим обусловлено также многообразие применяемых для переработки ПВХ технологических процессов каландрование, экструзия, литье и т.д. Переработка ПВХ без термостабилизаторов невозможна в обозримом будущем, так как полимер не устойчив к воздействиям тепла, света, проникающей радиации, механических нагрузок, биологически активных сред [48, 56, 106, 149]. Под влиянием многочисленных химических, физических, механических и биохимических факторов могут протекать разнообразные превращения ПВХ (отщепление НС1 с образованием сопряженных двойных связей, окисление, сшивание и др.), приводящие к изменению окраски полимера, существенному ухудшению физико-механических, диэлектрических, оптических и других эксплуатационных свойств матриалов на его основе [134, 135, 154]. [c.180]

    Пластификатор Дмполь-ный момент при 20 X Повер. сностное натяжение СГ Ю , Н/м Термический коэффициент линейного расширения При 20 сс- lo-j Диэлектрическая Проницаемость прн 90 "С [c.93]

    На практике для композиции одного состава нногда наблюдается довольно значительный разброс значений удельного объемного электрического сопротивления. Это обусловливается тем, что на удельное объемное диэлектрическое сопротивление пластифицированной полимерной композиции оказывает влияние состав композиции, примеси, входящие в состав композиции, гидролитическая и термоокислительная деструкция пластификатора, деструкция полимера и условия переработки. [c.178]

    Терефталевая кислота (ТФК) и диметиловый эфир терефталевой кислоты (ДМТ) являются важнейшими мономерами в производстве полиэфиров, полиоксадиазолов, полибензимидазолов, алкидных смол, пластификаторов других полимерных материалов. Полиэфиры, и в частности полиэфирные волокна, находят все большее применение в технике и в быту [1—5]. Сравнительно высокий модуль наряду с большой прочностью, относительно высокой термостойкостью, а также высокие диэлектрические характеристики позволяют применять полиэфирные волокна для производства шинного корда, транспортерных лент, приводных ремней, парусов, пожарных рукавов, электроизоляционных и других материалов [6]. [c.7]

    Введенные о полимер пластификаторы оказывают алияпие на все его физико-механические свойстаа (прочность, эластичиость, хрупкость, диэлектрические потерн, температуру стеклования и текучести и т. Д.). [c.435]

    Некоторые авторы [3, с. 208—227] различают термины пл1-стификатор , который означает инертное соединение, вводимое в иолимер для изменения механических свойств, и флексиби-лизатор , т. е. компонент, вступающий в реакцию с отверждающейся системой и увеличивающий гибкость и подвижность тре -мерной сетки. При введении пластификаторов и флексибилиза-торов наблюдается увеличение ударной вязкости и разрывного удлинения образцов. Однако при этом происходит снижение температуры стеклования, уменьшение термо- и химической стойкости и, как правило, возрастают диэлектрические потери и водопоглощение. Так как прочность зависит от модуля упругости и разрывного удлинения, то для хрупких эпоксидных п )-лимеров при введении пластификаторов она вначале увеличивается за счет роста удлинения, а затем сильно снижается за счет резкого уменьшения модуля, как это показано на рис. 6.1 [3, с. 211 66]. [c.158]

    Введенные в полимер пластификаторы оказывают влияние ria все его физико-механические свойства (прочность, эластичность, хрупкость, диэлектрические потер , температуру стекловаиия и текучести и т- д.). [c.435]


Смотреть страницы где упоминается термин Диэлектрические пластификаторов: [c.123]    [c.31]    [c.102]    [c.391]    [c.287]    [c.441]    [c.441]    [c.442]    [c.93]    [c.377]    [c.255]    [c.459]    [c.114]    [c.181]    [c.286]    [c.441]    [c.442]   
Физико-химия полимеров 1978 (1978) -- [ c.461 , c.463 ]




ПОИСК





Смотрите так же термины и статьи:

Пластификаторы



© 2024 chem21.info Реклама на сайте