Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дипольно-сегментальные диэлектрические потери

    При Г ОХ диэлектрические потери связаны преимущественно с ориентацией диполей за счет перемещения или поворотов сегментов макромолекул, а при Г<ОХ ориентация происходит благодаря движению боковых групп или радикалов, химически связанных с основной целью. Можно сказать, что при Т>0°С, в основном, проявляются дипольно-сегментальные, а при Т С 0°С— дипольно-групповые диэлектрические потери .  [c.245]


    Таким образом, введение стирола в цепь ММА влияет как на дипольно-групповые, так и на дипольно-сегментальные потери, меняя их значение и времена релаксации при процессах диэлектрической релаксации. [c.248]

    Существенное влияние на релаксационные диэлектрические потери оказывает также пластификация полимеров. С ростом концентрации пластификаторов в полимере время релаксации, как правило, уменьшается, а область максимума дипольно-сегментальных потерь сдвигается в сторону низких температур, поскольку пластификация, как правило, существенно снижает температуру структурного стеклования. [c.248]

    Диэлектрический метод оказывается пригодным как для полярных (поливинилхлорида, политетрафторэтилена), так и для неполярных полимеров (полиэтилена, полистирола и т. д.), поскольку полимеров, абсолютно лишенных полярных групп или примесей, практически не существует. Для всех полимеров установлены два типа диэлектрических потерь дипольно-сегментальные, связанные с подвижностью звеньев или большой совокупности их (кинетических сегментов) в электрическом поле, и дипольно-групповые, обусловленные движением, например, боковых полярных групп. Если в боковой цепи полимера содержатся полярные группы, способные ориентироваться в электрическом поле независимо друг от друга и имеющие разные времена релаксации, то наблюдается сложный пик дипольно-групповых потерь. Сегментальное движение в полимерах при температурах выше 7 с кооперативно, так как движения [c.183]

    Р- и сегментальный а-релаксационный переход. Диэлектрические потери, обусловленные этими переходами и проявляющиеся в виде максимумов на соответствующих зависимостях, получили название дипольно-груп-повых и дипольно-сегментальных. Ответственные за них кинетические единицы (атомные группы и сегменты) возбуждаются и механическими переменными полями поэтому на спектрах внутреннего трения также наблюдаются максимумы, соответствующие р- и а-процессам релаксации. [c.246]

    В аморфных полимерах наиболее интенсивный максимум е" или проявляется в области перехода из стеклообразного в высокоэластическое состояние. Он обусловлен микроброуновским движением сегментов полимерных цепей. Диэлектрические потери такого рода получили название дипольно-сегментальных. Процессы диэлектрической релаксации, обусловленные молекулярной подвижностью локального типа, называют диполь-но-групповыми. [c.192]


    Наибо,лее подробно влияние молекулярной массы на диэлектрические свойства полистирола и поливинилацетата изучено Колесовым [80], который показал, что изменение Гмакс дипольно-сегментальных потерь прн увеличении молекулярной массы сопровождается изменением энергии активации. Энергия активации достигает максимального значения в области молекулярных масс, соответствующих излому зависимости Тс — М, и при дальнейшем увеличении молекулярной массы уменьшается, асимптотически приближаясь к постоянному значению при М> 100 000. Для нефракционированных образцов изменение энергии активации с увеличением молекулярной массы значительно меньше (см. рис. 43). [c.97]

    Наибольшая чувствительность к тактичности цени наблюдается у полиэфиров метакрилового ряда (рис. 44) [83]. Для всех полимеров, указанных на рис. 44, имеет место общая тенденция у изотактических образцов области максимумов дипольно-сегментальных и дипольно-групповых потерь сдвинуты к более низким температурам диэлектрические потери в области максимума дипольно-сегментальных потерь больше, а в области максимума дипольно-групповых потерь меньше, чем у атактических полимеров. У полибутилметакрилата из-за наложения дипольно-сегментальных и дипольно-групповых потерь наблюдается лишь один совмещенный процесс [4, с. 146]. [c.98]

    Сопоставление частотных зависимостей фактора диэлектрических потерь для дипольно-сегментального процесса сшитых и линейных аморфных полимеров показало, что у сшитых поли- [c.99]

    Смеси полимеров можно разделить на несовместимые и совместимые. Для совместимых смесей характерен один максимум дипольно-сегментальных потерь, даже если компоненты значительно отличаются по температурам стеклования. Так же, как у сополимеров, Гмакс дипольно-сегментальных потерь у совместимой смеси зависит от концентрации компонентов и их Гмакс-В качестве примера совместимых смесей можно привести смеси каучуков СКН-18 и СКН-40 натурального каучука и СКС-30. Таким образом, по диэлектрическому поведению совместимые смеси не отличаются от сополимеров [4, с. 151]. [c.102]

    В переменных электрических полях наблюдаются аналогичные механическим диэлектрические дипольно-сегментальные потери, природа которых та же — сегментальная подвижность. В полимерных стеклах сегментальная подвижность играет важную роль, так как является причиной многих явлений (стеклование, вынужденная высокоэластичность, ползучесть, квазихрупкое разрушение, трещины серебра и т. д.). В кристаллических полимерах сегменты могут находиться в трех различных состояниях, а в наполненном аморфном полимере — в двух состояниях, что приводит к мультиплетности релаксационных спектров а-процесса релаксации. Основным при этом остается а-процесс, ответственный за стеклование. Его вклад, как можно судить по высоте максимумов на спектрах, существенно больше, чем остальных процессов этой группы. [c.199]

    Электрические свойства. Михайлов и Сажин [1011] при исследовании диэлектрических потерь и проницаемости кристаллизующихся полимеров нашли, что у полиамидов наблюдается два вида потерь, связанные с различными видами теплового движения. Потери высокочастотной релаксации аналогичны дипольно-радикальным потерям аморфных полимеров и отображают тепловое движение небольших участков молекул частично закристаллизованного вещества в аморфной фазе. Потери среднечастотной релаксации аналогичны дипольно-эла-стическим потерям и связаны с сегментальным тепловым движением молекулярных цепей вещества в аморфной фазе. Величины tg б и Е полиамидов возрастают при увеличении полярности полимера. [c.265]

    При исследовании спектров ЭПР радикала-зонда, помещенного в модифицированный эластомер, наблюдались [74] линии замороженных радикалов, характерные для радикала, помещенного в застеклованную матрицу (рис. 1.2). На этом основании был сделан вывод, что в эластомерах, совмещенных с ОЭА, существуют две структурно-кинетические отличающиеся области — модифицированного каучука и застеклованного сетчатого полимера ОЭА. Это подтверждается следующими наблюдениями. При исследовании температурно-частотной зависимости диэлектрических потерь в вулканизатах с ОЭА [78] наряду с обычным для каучука максимумом дипольно-сегментальных потерь появляется также дополнительный высокотемпературный релаксационный спектр, обусловленный ориентацией полярных групп ОЭА (рис. 1.3). При исследовании структуры вулкаиизатов СКН-26, СКС-30, СКЭП, содер- [c.28]

    Дипольно-сегментальные и дипольно-групповые потери в полимерах связаны с подвижностью кинетических единиц макромолекулярной цепи. Поэтому факторы, определяющие молекулярную подвижность, оказывают влияние и на диэлектрические потери в полимерах. К""ним относятся ориентация полимерных цепей, сшивание цепей, давление, действие низкомолекулярных примесей, в частности пластификаторов [19—22]. [c.257]


    Аналогичные максимумы имеются и на кривой зависимости — Т при заданной V. При этом также фиксируются области проявления дипольно-групповой (при низких температурах) и дипольно-сегментальной (при более высоких температурах) подвижности. Последний максимум соответствует области стеклования полимера при заданной частоте V. Теория метода диэлектрических потерь изложена в книге Сажина и др. .  [c.73]

    Изучение дипольной поляризации в интервале температур, где диэлектрические потери велики вследствие электропроводности материала, представляет большие трудности, поэтому дипольная поляризация, вызванная движением макромолекул как целого, до сих нор фактически не изучена. Следуе г отметить, что при большой электропроводности материала диэлектрические потери, связанные с электропроводностью, могут оказаться существенными уже при температурах, незначительно превышающих температуру стеклования, и затушевывать область максимума е", обусловленную сегментальным движением макроцепей (а-нроцесс). [c.129]

    Влияние частоты. На рис. 83 представлена схема частотных зависимостей е" ие при Т > Г для аморфного полярного полимера, у которого наблюдается область дипольно-сегментальных потерь (а-процесс) и область дипольно-групповых потерь (р-процесс). При Г < Г(. на частотной зависимости имеет место область максимума релаксационных дипольно-групповых потерь (Р-процесс) и при частотах 10 —10 Гц — области максимумов резонансных потерь. При Т > Тс на частотной зависимости при низких частотах наблюдаются возрастающие с понижением частоты диэлектрические потери, вызванные электропроводностью, две области максимумов релаксационных потерь (а и Р) и при частотах 10 —10 Гц резонансные потери, положение которых на частотной шкале не зависит от температуры. При более высокой температуре вместо двух этих [c.131]

    Влияние давления на спектр времен релаксации и величину бмакс в областях дипольно-сегментальной и дипольно-групповой поляризации противоположно действию температуры. Если с повышением температуры спектр времен релаксации дипольно-сегментальной поляризации не изменяется, а е ,акс уменьшается, то частотные зависимости фактора диэлектрических потерь при различных давлениях не отличаются по ширине максимума, а 8 акс увеличивается при увеличении давления (рис. 92, а). [c.135]

    На рис. 98 приведены зависимости фактора диэлектрических потерь в области дипольно-сегментальных потерь от частоты для поливинилацетата различной молекулярной массы. Увеличение молекулярной массы от 2000 до 100 ООО приводит к смещению максимумов в сторону более низких частот и к уменьшению фактора диэлектрических потерь в максимуме. Эти изменения тем меньше, чем больше молекулярная масса, и при М 100 ООО дипольно-сегментальные потери перестают зависеть от молекулярной массы. [c.145]

    О протяженности кинетического сегмента можно судить потому, что в сополимерах со статическим распределением сомономерных единиц по цепи мы всегда наблюдаем один процесс ди-польно-сегментальной релаксации, в котором свойства каждого компонента усреднены (вне зависимости от их количественного соотнощения). В то же время каждый из полярных компонентов вызывает появление своего, специфического, процесса дипольно-групповой поляризации, что свидетельствует о локализации этого процесса в объеме порядка одного мономерного звена. Например, для статистического сополимера метилметакрилата с метилакрилатом (62,3 мол.7о последнего) наблюдаются две области максимума тангенса угла диэлектрических потерь tgOMaK дипольно-группового (ДГ) типа (при —70 и —30 °С) и одна область tgOMaK дипольно-сегментальных (ДС) потерь (рис. 1.7) [105]. [c.37]

    Исследование диэлектрических свойств полимеров — один из наиболее эффективных способов установления особенностей их строения. Диэлектрический метод оказывается пригодным как для полярных, так и неполярных полимеров (полиэтилен, полистирол, политетрафторэтилен и т. д.), поскольку полимеров, абсолютно лишенных полярных групп, практически не существует. В соответствии с корреляциями, рассмотренными в гл. I и И, для всех полимеров установлено два типа диэлектрических потерь ди-польно-сегментальные, связанные с подвижностью звеньев или большой совокупности их (кинетических сегментов) в электрическом поле, и дипольно-групповые, обусловленные движением, например, боковых полярных групп. Если в боковой цепи полимера содержатся полярные группы, способные ориентироваться в электрическом поле независимо друг от друга и имеющие разные времена релаксации, то наблюдается сложный пик дипольно-групповых потерь. Сегментальное движение в полимерах при температурах выше температуры стеклования кооперативно, так как подвижности сегментов данной цепи и сегментов соседних макромолекул взаимосвязаны. По этой причине в процесс ориентации вовлекаются области довольно больших размеров, чем и объясняются высокие значения кажущейся энергии активации сегментального движения. Ниже температуры стеклования Тс переход сегмента из одного равновесного положения в другое требует практически беС конечно большого времени, превышающего доступную продолжительность наблюдения. [c.243]

    Как в высокоэластическом, так и в стеклообразном состояниях величина диэлектрических потерь зависит от внутри- и межмоле-жулярных взаимодействий. Последние существенно могут зависеть -от полярности входящих в макромолекулу групп и от размера бокового радикала. Увеличение длины углеводородных (алкильных) радикалов однозначно сказывается на смещении максимума дипольно-сегментальных потерь в область низких температур. Это было показано на примере гомологического ряда по-лиалкилметакрилатов и других полимеров. [c.246]

    Исследование диэлектрических свойств линейных и сшитых бу-тадиенстирольных эластомеров показало, что в области низких температур и у вулканизатов, и у исходного каучука наблюдаются четкие максимумы дипольно сегментальных потерь (см. левую часть, рис. VII. 12). С увеличением условного равновесного модуля максимумы смещаются в сторону высоких температур, следовательно,, с повышением глубины вулканизации повышается температура стеклования Тс, последнее подтверждают и непосредственные из- [c.251]

    Первый тип диэлектрических потерь, называемых дипольно-сегментальными , связан с ориеитационными поворотами полярных звеньев макромолекулы в условиях, когда возможно сегментальное движение, т. е. в высокоэластическом состоянии (выше Тс полимера). Второй тип—дипольно-групповые - потери —обу- [c.276]

    Первый тип диэлектрических потерь, называемых дипольно-сегментальными, связан с ориеытацнониыми поворотами полярных звеньеа макромолекулы в ус ювиях, когда возможно сегментальное движение, т. е. в высокоэластическом состоянии (выше Гс полниера). Второй тип—дипольна-гручловые - потерн —обу- [c.276]

    С в течение 2 ч, с различным содержанием диоксида титана рутильной модификации [92]. С ростом степени нанолпе-ния наблюдается повышение е и уменьшение tg б покрытий во всем интервале температур, что обусловлено различием диэлектрических показателей эпоксидной пленки и пигмента диэлектрическая проницаемость пигмента более чем в 30 раз больше, а б почти на два порядка меньше, чем у связующего [9-3, с. 229]. Кроме того, уменьшение тангенса угла потерь, очевидно, связано и с уменьшением в результате адсорбции на поверхности частиц пигмента концентрации полярных групп полимера, участвующих в дипольно-релаксационной поляризации. Температура максимума дипольно-сегментальных потерь меняется при увеличении степени наполнения пленок немонотонно, как и полимера. [c.202]

    Исследование релаксационных процессов проводилось на системах, состоящих из эпоксидной смолы ЭД-20, стеклянной ткани, пластификатора — диоктилсебацината (15%) и отвердителя — по-лиэтиленполиамина [от 0,7 до 15,0% (масс.)]. Температурные зависимости тангенса угла диэлектрических потерь tg б таких композиций без наполнителя представлены на рис. 1.25. Для образцов, содержащих менее 6—7% отвердителя, наблюдаются два максимума tg6, что характерно для аморфных линейных полимеров и олигомеров. При низких температурах (при —128°С) область дипольно-групповых потерь, а при более высоких (от —20 до 20 °С) — дипольно-сегментальных потерь смещалась в сторону высоких температур при увеличении содержания отвердителя. Исследование образцов, содержащих более 7% отвердителя (рис. 1.25), показывает, что в данном частотном интервале подвижность сегментов в уже образованной трехмерной сетке не проявляется, но возникают два новых процесса при —128 °С (при этой температуре мы ранее наблюдали максимум потерь для системы с малым содержанием отвердителя, рис. 1,25, а, кривые 1—5) и максимум потерь при температурах от —45 до —72 °С, обусловленный подвижностью кинетических единиц больших, чем те, которые ответственны за дипольно-групповое Движение, но меньших, чем сегменты. Они возникают после связывания эпоксидной смолы в трехмерный полимер, т. е. после точки геля. При этом процесс релаксации с увеличением содержания отвердителя в образцах смещается в сторону низких температур. Это свидетельствует о том, что размеры подвижных единиц уменьшаются с увеличением глубины превращения смолы в трехмерный полимер. [c.59]

    Смещение областей максимумов " по шкале температур при изменении частоты электрического поля описывается зависимостью lg/макс—1/7, где /макс —частота, а Г —температура, при которых фактор диэлектрических потерь максимален. Как видно из рис. 36, а, характер зависимостей lg/макс—1/7 различен для дипольио-сегментальных и дипольно-групповых процессов. У дипольпо-сегментальных процессов зависимости lg/ aк — [c.85]

Рис. 38. Зависимость от частоты диэлектрической проницаемости и фактора диэлектрических потерь в области дипольно-сегментальной релаксации у поли-метилакрилата ири 313 К (а), а также фактора диэлектрических потерь в области дипольно-групповой релаксации у полиэтплметакрилата при 304 К (б) при различном давлении. Рис. 38. Зависимость от <a href="/info/1493068">частоты диэлектрической проницаемости</a> и <a href="/info/728444">фактора диэлектрических потерь</a> в области <a href="/info/177052">дипольно-сегментальной релаксации</a> у <a href="/info/290204">поли-метилакрилата</a> ири 313 К (а), а также <a href="/info/728444">фактора диэлектрических потерь</a> в области <a href="/info/177051">дипольно-групповой релаксации</a> у полиэтплметакрилата при 304 К (б) при различном давлении.
    Влияние давления на спектр времен релаксации и величину макс областях дипольно-сегментальной и дипольно-групповой поляризации противоположно действию температуры. Если с повышением температуры спектр времен релаксации дипольно-сег-ментальпой поляризации не изменяется, а уменьшается, то частотные зависимости фактора диэлектрических потерь при различных давлениях не отличаются по ширине максимума, а макс увеличивается при увеличении давления (рис. 38, а). В области дипольно-групповой поляризации при повышении температуры обычно спектр времен релаксации сужается, т. е. ширина [c.89]

    Однако имеются н релаксационные процессы, где фактор диэлектрических потерь уменьшается при снижении степени кристалличности. К таким релаксационным процессам относятся а-процессы у полиэтилена, полиокспметилена, поливинилиденфторида на низких частотах вблизи Т л. Для а-процесса у этих полимеров характерны энергия активации, составляюшая несколько десятков кДж/моль, уменьшение с повышением частоты и исчезновение этих потерь при плавлении полимера. Этот релаксационный процесс очень чувствителен к изменению сферолитной структуры материала. Так же, как и у аморфных полимеров, у частично кристаллических полимеров могут наблюдаться динольно-сегментальные и дипольно-групповые потери, обусловленные молекулярным движением в аморфных областях [4, с. 137]. [c.91]

    Увеличение степени кристалличности приводит к повышению температуры максимума дипольно-сегментальных потерь, т. е. к увеличению наиболее вероятного времени релаксации, при этом температурный коэффициент времени релаксации, т. е. энергия активации, практически пе изменяется. Изменения Гмакс дипольно-групповых потерь при увеличении степени кристалличности носят случайный характер. У некоторых полимеров кристаллизация не влияет на Гмакс дипольно-групповых потерь, у других приводит к небольшому повышению Т макс) 3 У ПОЛИТрИ-фторхлорэтилена, наоборот, — к понижению Г акс. Особенно сильно влияет степень кристалличности на уменьшение фактора диэлектрических потерь в области дипольно-сегментальной релаксации. Так, у полиэтилеитерефталата с изменением степени кристалличности от О до 60% дипольно-сегментальных потерь уменьшается в 4 раза, а дипольно-групповых потерь — всего в 1,6 раза. Увеличение степени кристалличности вызывает резкое уменьшение параметра распределения по временам [c.91]

Рис. 43. Зависимость температуры максимума дипольно-сегментальных потерь и температуры стеклования (а), а также энергии активацип и фактора диэлектрических потерь в области максимума (б) от молекулярной массы для полпвинилацетата Рис. 43. <a href="/info/12832">Зависимость температуры</a> максимума дипольно-сегментальных потерь и <a href="/info/4977">температуры стеклования</a> (а), а <a href="/info/133272">также энергии</a> активацип и <a href="/info/728444">фактора диэлектрических потерь</a> в <a href="/info/1470814">области максимума</a> (б) от <a href="/info/532">молекулярной массы</a> для полпвинилацетата
    Изучение диэлектрических потерь, диэлектрической проницаемости и других физических свойств изотактических, синдио-тактических и атактических полимеров показало, что атактические полимеры весьма близки к синдиотактическим. Изотакти-ческие полистирол [83], поливинилциклогексан, полипропилен, в отличие от атактических полимеров, являются частично кристаллическими полимерами и для них характерны меньшие значения тангенса угла диэлектрических потерь в области максимума дипольно-сегментальных потерь и сдвиг максимума в сторону более высоких температур. Например, при частоте 1000 Гц у атактического полнвипилциклогексана бм акс — 0,004, 7 макс = = 403 К, у изотактического бмакс—0,001, 7макс = 448 К- Эти [c.98]

    Исследование диэлектрических свойств эпоксидных смол на различных стадиях отверждения показало, что с увеличением времени отверждения область максимума tgб дииольно-сегмен-тальных потерь смещается в сторону более высоких температур, а значение 1дб акс уменьшается [84]. В процессе отверждения смолы при постоянной температуре в области проявления дипольно-сегментальной релаксации максимум б (или е") смещается в сторону более низких частот, его значение понижается и соответственно уменьшается диэлектрическая проницаемость. Это дает возможность контролировать процесс от-верладения по измерениям диэлектрической проницаемости. Если время релаксации сегментального движения резко изменяется при изменении густоты сетки, то время релаксации дипольно-группового процесса, по-видимому, мало зависит от густоты сетки. У неполностью отвержденной смолы (40 % прореагировавшего отвердителя) частота, при которой б дппольно-группо-вых потерь максимален, такая же, как и у полностью отвержденной смолы. [c.100]

    Для всех полимеров установлено два типа диэлектрических потерь [2, 3, 9]. Первый тип диэлектрических пртерь, называемых дипольно-сегментальными , связан с ориентационными поворотами полярных звеньев макромолекулы в условиях, когда возможно сегментальное движение т. е. в высокоэластическом состоянии (выше 7 с полимера). Второй тип— дипольно-групповые потери — обусловлены ориентацией самих полярных групп. Этот вид потерь может проявляться и ниже Го полимера,, т. е. в стеклообразном состоянии. [c.246]

    Таким образом, для наилучшего разрешения всего релаксахщон-ного спектра полимера, т. е. для раздельного наблюдения всех релаксационных процессов необходимо измерять температурную зависимость е" при низких частотах. Как видно из рис. 88, кривые зависимостей 1д / акс—1/ Для динольно-сегментальных (а) и дипольно-групповых (Р) процессов, несмотря на различные энергии активации, не пересекаются, а сливаются в одну кривую. Поэтому совмещенный процесс. По-видимому, следует рассматривать как единый. Значение энергии активации совмещенного процесса лежит между значениями энергий активации для а- и р-процессов или совпадает со значением энергий активаций р-процесса [1, с. 215]. Следует отметить, что более правильно строить зависимости lg / акс — 1/Т, определяя / акс и макс не из температурных, а из частотных зависимостей фактора диэлектрических потерь. [c.131]

    У некоторых полимеров кристаллизация не влияет на температуру максимума дипольно-групповых потерь, у других приводит к небольшому повышению Гмакс а у политрифторхлорэтилена, наоборот, — к понижению Гмакс-Особенно сильно влияет степень кристалличности на уменьшение фактора диэлектрических потерь в области дипольно-сегментальной релаксации. Так, у нолиэтилентерефталата с изменением степени кристалличности от О до 60% Е акс дипольно-сегментальных потерь уменьшается в 4 раза, а биакс дипольно-групповых потерь — всего в 1,6 раза. [c.137]

    Известно довольно значительное число работ, где исследовались температурные зависимости тангенса угла диэлектрических потерь ориентированных полимеров, измеренные в электрическом поле, перпендикулярном оси ориентации [1, с. 233]. У аморфных полимеров (поливинилацетата, полиметилвинилкетона, полиметилакрилата) зависимости tg б от температуры у ориентированных образцов отличались от таковых у неориентированных образцов лишь более высокой температурой максимума дипольно-сегментальных потерь, т. е. было замечено лишь влияние ориентации на увеличение времени релаксации сегментального движения. Однако прецезион-ные измерения [1, с. 230, 231], проведенные при частоте 10 Гц для поливинилхлорида и полиметилметакрилата, позволили обнаружить анизотропию е и е" у ориентированных образцов этих полимеров (табл. 6). [c.139]


Смотреть страницы где упоминается термин Дипольно-сегментальные диэлектрические потери: [c.244]    [c.284]    [c.286]    [c.284]    [c.284]    [c.99]    [c.254]    [c.136]   
Физико-химия полимеров 1978 (1978) -- [ c.246 , c.248 ]




ПОИСК





Смотрите так же термины и статьи:

Диэлектрические потери диэлектрических потерь



© 2025 chem21.info Реклама на сайте