Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплообменники защита от коррозии

    Коррозионный износ труб и корпуса можно предотвратить или значительно уменьшить, подбирая металл для их изготовления в зависимости от свойств сред, в которых они работают. Имеется опыт катодной защиты корпуса, труб и крышек теплообменников от коррозии морской водой. Такая защита замедляет скорость коррозии в 5—6 раз. В зависимости от размеров защищаемых поверхностей определенное количество элементов, подлежащих катодной защите, подвешивают внутри крышек аппарата по мере износа элементы при ремонтах периодически заменяют новыми. [c.154]


    Технологическая схема прямой гидратации этилена (рис. 70) состоит из нескольких непрерывно протекающих операций 1) приготовления исходной парогазовой смеси 2) гидратации этилена 3) нейтрализации паров продуктов, образующихся в результате реакции 4) рекуперации теплоты рециркулирующих потоков и 5) очистки циркулирующего газа. Гидратация этилена проводится в контактном аппарате, который для защиты от коррозии выкладывается красной медью. Этилен смешивается с водяными парами и вся смесь направляется в теплообменник и затем в печь, откуда парогазовая смесь при 280°С поступает в гидрататор, который заполнен катализатором на высоту 8,5 м. Время контакта 18—20 с. [c.173]

    На нефтедобывающих и нефтеперерабатывающих предприятиях ведутся работы по защите оборудования и аппаратуры от коррозии (1—3]. Было установлено, что введение в нефть ингибитора коррозии И-2Д, представляющего собой смесь алкилпиридинов, выкипающих в пределах 180—350° С, обеспечивает эффективную защиту от коррозии теплообменников подогрева сырой нефти. Так как ингибитор вводят в нефть в процессе переработки, то в результате распределения ее в колонне (К-2) по фракциям может попасть в топливо ТС-1. В связи с этим было необходимо исследовать качество получаемого топлива ТС-1 и установить влияние ингибитора коррозии, вводимого в нефть, на эксплуатационные свойства этого топлива. [c.63]

    Для Оренбургского месторождения изменение скорости коррозии в технологической цепочке также характерно. Скорость коррозии на забое скважин при давлении 17 МПа и температуре 28°С достигала 1 мм/год. Однако в теплообменниках она не превышала 0,2 мм/год, что связано с изменением параметров давления (7 МПа) и температуры (8°С) по мере движения газа. Содержание агрессивных компонентов в газе при этом осталось прежним. Далее по технологической цепочке по мере увеличения влажности и температуры газа скорость коррозии увеличивалась до 0,5 мм/год, а на установках регенерации гликоля (Т = 130°С) превысила 1 мм/год. Следует иметь в виду, что приведенные данные получены в случае отсутствия эффективной ингибиторной защиты оборудования. При использовании ингибиторной защиты снижается только величина скорости коррозии, общие же закономерности изменения последней в технологической цепочке сохраняются. [c.218]

    Ингибиторная защита предусматривает обеспечение надежной работы всех элементов оборудования скважин, шлейфовых газопроводов, сепараторов, теплообменников и газопроводов большого диаметра. Применение ингибиторов должно приводить к снижению скорости общей коррозии металла до величин, не представляющих какой-либо опасности для технологического оборудования, а в случае сероводородной коррозии — к резкому уменьшению наводороживания металла и к потере им пластических свойств, то есть, в конечном итоге, к снижению опасности сероводородного растрескивания. [c.221]


    Катодная защита судов от коррозии охватывает комплекс мероприятий по наружной защите подводной части судна и всех навесных устройств и отверстий (например, гребного винта, руля, кронштейнов гребного вала, кингстонных выгородок, черпаков, струйных рулей) и по внутренней защите различных танков (резервуаров балластной и питьевой воды, для топлива и хранения других продуктов), трубопроводов (конденсаторов и теплообменников) и трюмов. Указания по выбору размеров и распределению анодов или протекторов имеются в нормативных документах [1—5]. Суда отличаются от других защищаемых объектов, рассматриваемых в настоящем справочнике, тем, что они в ходе эксплуатации подвергаются воздействию вод самого различного химического состава. Важное значение при этом имеют в первую очередь солесодержание и электропроводность, поскольку эти факторы оказывают существенное влияние на действие коррозионных элементов (см. раздел 4.2) и на распределение защитного тока (см. раздел 2.2.5). Кроме того, на судах приходится учитывать проблемы, связанные с наличием разнородных металлов (см. раздел 2.2.5). Мероприятия по защите судов от блуждающих токов рассмотрены в разделе 16.4. [c.352]

    Высокая агрессивность и биологическая активность морской воды, способствующая биологической коррозии и обрастанию аппаратуры при ее использовании, рассмотрены в предыдущей главе. Они определяют необходимость использования специальных мер защиты аппаратуры от коррозии в морской воде, тем более что микробиологическое обрастание толщиной 250 мкм на теплообменнике, в котором протекает морская вода, на 50 % уменьшает коэффициент теплопередачи. [c.26]

    Углеродистые стали, независимо от марки, имеют примерно одинаковую скорость коррозии в морской воде, составляющую в начальный период 0,12—0,16 мм/год и снижающуюся по мере установления стационарного режима до 0,04—0,06 мм/год [2]. Такая скорость коррозии вполне допустима для толстостенных аппаратов, тогда как для тонкостенных трубок, составляющих основу кожухотрубчатых теплообменников и конденсаторов, допустимая скорость коррозии не должна превышать 0,05 мм/год [3]. Срок службы трубных пучков из углеродистой стали при охлаждении морской водой не превышает 0,5 года. Для коррозионной защиты конденсационно-холодильного оборудования нефтехимических производств, работающего на морской воде, в некоторых случаях используют протекторную защиту. Применяют стандартные магниевые протекторы, такие, как для защиты подземных сооружений, диаметром ПО и длиной 600 мм из сплава МЛ-3, укрепляемые на перегородках крышек или на заглушенных трубках. Срок службы протектора 1,5—2 года [6]. [c.26]

    Для защиты металлических конструкций, работающих на открытом воздухе, от атмосферной коррозии их обычно покрывают красками. Особенно стойки алюминиевые краски, сохраняющиеся при хорошей грунтовке до 10—15 лет. При транспортировке теплообменников для защиты их от коррозии применяют смазки. [c.75]

    Невысокая коррозионная стойкость сталей и низкая жаропрочность приводит к провисанию полок с катализатором. Для защиты от коррозии внутренние поверхности контактного аппарата, трубы теплообменников и газоходы покрывают слоем алюминия толщиной 0,25 мм. [c.51]

    По-видимому, остаточные количества двуокиси углерода и сероводорода защищают алюминий от коррозионного действия щелочных аминов (рис. 3.3). В теплообменниках гликоль-аминовых систем с успехом применяются трубки из алюминиевого сплава. Коррозия алюминия предотвращается не только присутствием остаточных количеств двуокиси углерода и сероводорода, но и присутствием гликоля в растворе. Для надежной защиты от щелочной [c.53]

    В некоторых конструкциях в верхних зонах сжигания устанавливают теплообменники различного типа для дополнительного охлаждения газов до 150-160 °С [50]. На рис. 2-7 представлена печь, состоящая из трех частей камеры сжигания 1, охлаждающего устройства 5 и перепускного канала 4, соединяющего камеру сжигания и охлаждающее устройство. Несущей конструкцией является стальной кожух 3, снабженный облицовкой для защиты от коррозии и сильного нагревания. Через горелку 2, находящуюся у основания камеры сжигания 1, обычным способом подаются газы для сжигания. Образующийся в печи хлористый водород при температуре выше точки росы выходит через отверстие для хлористого водорода. [c.32]

    Сухой сернистый газ реагирует с алюминием очень медленно. Поэтому алюминий используют для защиты от коррозии деталей и узлов теплообменников и контактных аппаратов. [c.170]

    Во всех случаях следует стремиться к минимальному уносу, потому что при сжатии пар перегревается и все капли жидкости в нем испаряются, загрязняя его растворенным в них твердым веществом. В некоторых случаях для защиты компрессора от коррозии пар пропускают через скруббер. Механическая выпарка с повторным сжатием вторичного пара обычно требует больше греющего пара, чем может дать компрессор. Частично недостающее тепло можно компенсировать, предварительно нагревая исходный раствор за счет тепла конденсата, а если возможно, — то и продукта. При этом оправдывают себя теплообменники с низкой разностью температур и сильно развитой поверхностью нагрева, тогда выпарной аппарат работает при высокой температуре (уменьшается объем пара, подлежащего сжатию).. Когда необходимо получать продукт в твердом состоянии, очень удобно пользоваться аппаратом, снабженным рукавом для отстаивания, в который поступает питание (рис. 1У-17,6), так как шлам здесь охлаждается почти до температуры кипения. Недостающее тепло должно поступать в выпарной аппарат из внешних источников. При наличии электродвигателей дополнительный пар может быть получен в электрических кипятильниках, но это повышает расход энергии. Если пользуются дизельным двигателем, то дополнительный пар можно получить за счет тепла отходящих газов (или всей охладительной системы двигателя). [c.296]


    При синтезе метилового спирта выделяется тепло. Во избежание перегрева катализатора предусмотрена подача холодного газа на каждую полку реактора. Внутри реактора вмонтирован электроподогреватель для разогрева газа в пусковой период. Внутренняя поверхность реактора и теплообменника облицована красной медью (защита от карбонильной коррозии). [c.237]

    В отсутствие анодной защиты змеевики из углеродистой стали в результате коррозии выходят из строя после суток работы также быстро выходят из строя змеевики из нержавеющей стали. Поэтому была исследована возможность применения анодной защиты теплообменников в 70—90%-ной серной кислоте при 100—120°С. Так как анодная защита углеродистой стали возможна только при температурах, не превышающих 90 С, а за- [c.136]

    Повышенный интерес к технологии изготовления сосудов давления в последнее время возник из-за все более широкого внедрения ядерной энергии в промышленную энергетику. Промышленное применение ядерной энергии началось в 1950 г. с создания в Великобритании газоохлаждаемого реактора, топливом для которого служил металлический уран. Крупные сосуды давления из стали использовались для размещений в них реактора, теплообменников и теплоносителя в виде углекислого газа под давлением. Эти сосуды были в основном изготовлены из малоуглеродистой стали толщиной до 100 мм и требовали значительных разработок методов и технологии изготовления. Опубликовано много сведений о расчете этих сосудов, технологии изготовления и конструкционных материалах [1—3], но так как использование стальных сосудов в газоохлаждаемых реакторах было вытеснено сосудами давления из предварительно-напряженного бетона, то они не будут в дальнейшем обсуждаться [4]. Сосуды давления из стали для размещения в них реактора и теплоносителя в виде легкой воды под давлением продолжали использоваться в конструкциях энергетических реакторов преимущественно в США, а именно, реакторы с водяным теплоносителем под давлением и реакторы с кипящей водой [5—8]. В таких сосудах возникают специальные проблемы выбора длины, толщины сосуда, плакировки для защиты от коррозии, расчета фланцев, соединений и патрубков. Однако эти вопросы не выходят за пределы проблем, возникающих при создании обычных сосудов давления, и в основном были освещены в соответствующих разделах этой книги. Существенная проблема, относящаяся к сосудам давления атомного реактора, заключается в том, что сосуд подвергается нейтронному облучению в течение всего срока службы, в результате изменяются свойства стали, из которой он изготовлен. [c.400]

    В газовой фазе сероводород и аммиак не взаимодействуют между собой при высокой температуре, но при понижении температуры они осаждаются в виде гидросульфида аммония на поверхности различного оборудования, например, в теплообменниках. Для защиты аппаратуры от этого осадка образовавшийся гидросульфид аммония растворяется и удаляется водой. Однако эта жидкая фаза, состоящая из воды, сероводорода и аммиака, является очень коррозионно-активной. До сих пор не найдено достаточно эффективного ингибитора коррозии стали в такой агрессивной среде. [c.90]

    Члены ремонтных бригад разрабатывают и внедряют ценные рационализаторские предложения. Так, по предложениям слесарей-рационализаторов на различных предприятиях была проведена замена обычных трубок теплообменников сребренными. Оребрение производилось на специально приспособленных токарных станках стальными термически обработанными роликами. Была проведена защита трубчатки от коррозии прокачиванием через нее защитного лака. Весьма эффективной оказалась также установка на насосах подшипников, изготовленных из графитопласта и металлокерамики. Такие подшипники не требуют смазки. [c.226]

    Среди других описанных примеров применения пленкообразующих или популярных органических ингибиторов для защиты от коррозии следует упомянуть работу Банта и Маррея [67], в которой обсуждается, каким образом ингибитор указанного типа уменьшает загрязнение теплообменника продуктами коррозии. В этой работе отмечается, что еще более положительные результаты дает применение ингибитора, обладающего также и деэмульгирующими свойствами. Дравникс и Сэменз [54] описывают использование ингибиторов для предотвращения коррозии в ультраформинге. Они отмечают, что уменьшение коррозии необходимо рассматривать отдельно для рециркулирующего газа, нефти и смеси газа и нефти. Обессеривание сырья устраняет серную коррозию, но при этом проблема коррозии лишь переносится в отделение обессеривания. Удовлетворительная защита получается при строгом контроле отношения сероводорода к водороду в газовом потоке, при разделении нефти и потоков, содержащих водород, и при использовании подходящих ингибиторов, сплавов и покрытий. [c.276]

    Защита теплообменников от коррозии и повышение тепловой устойчивости системы ДК возможно путем проведения горячей абсорбции, подогрева газа после промежуточного абсорбера в фортеплообменнике или рекуператоре за счет тепла высокотемпературного газа, или других источников — водяного пара, электроэнергии. В отечественных схемах принято нагревание газа после промежуточной абсорбции в фортеплообменнике, в основном газом, выходящим из контактного аппарата. В значительной мере тепловая устойчивость схем ДК определяется состоянием теплоизоляции, поэтому необходимо ее качественное выполнение и поддержание в исправности при эксплуатации. [c.135]

    Подземное хранение. Рассмотрим технику хранения СНГ в закопанных в землю стальных емкостях и искусственно сооруженных подземных хранилищах. Емкости с повышенным давлением располагают под землей в тех случаях, когда это необходимо для защиты окружающей среды. Такие емкости следует обрабатывать против наружной коррозии и монтировать на бетонном основании внутри железобетонной шахты. Между стенками шахты и емкости оставляют пространство шириной 1 м, засыпанное чистым песком. Стоимость установки подземной емкости значительно выше стоимости установки наземной емкости. При этом экономится лишь незначительное пространство, так как использование земельной площади над вкопанными емкостями, закачиваемыми СНГ под давлением, накладывают ограничения. Отбор жидкости осуществляют с помощью насоса, расположенного в специальном подземном помещении рядом с емкостью, и сливных трубопроводов, идущих вдоль днища емкости, или, что предпочтительнее с точки зрения управления, с помощью насоса, смонтированного на поверхности. В последнем случае можно применять самоза-правляющийся центробежный насос (потери при нагнетании за счет паровой пробки ликвидируют наддувом в емкость подогретых во внешнем теплообменнике и возвращаемых назад паров). [c.136]

    В процессах подготовки нефти эмульгированная минерализованная пластовая вода и сернистые соединения вызывают коррозионные разрушения установок стабилизации, обессоливания и обезвоживания нефти. Коррозионную активность перерабатываемой нефти определяют сернистые соединения и вода. В результате расщепления хлористого магния, содержащегося в пластовой воде, образуется хлористый водород, вызывающий интенсивную коррозию установок АТ и АВТ (теплообменники, элек-трогидраторы, сепараторы, холодильники, колонные аппараты и др. [292]. В процессах прямой перегонки нефти коррозионному разрушению подвержены верхняя часть аппаратуры под действием второй фазы водного конденсата с растворенными в ней хлористым водородом и сероводородом [291, 292]. Значительно усиливаются процессы коррозии при введении в сырье водяного пара [292]. Содержание в нефтях нафтеновых кислот способствует коррозии печных труб при температуре ts = 350°С. Защита от [c.7]

    Другая область их применения - на стадии предгидроочистки риформинга для защиты от коррозии колонн стабилизации, теплообменников, сепараторов и т.д. (напр., при переработке сырья, загрязнённого хлором). [c.18]

    Катодный метод используют также в борьбе с коррозией теплообменников, водонагревательных установок, для защиты металлической общивки кораблей и т. д. [c.371]

    Известен опыт применения боридных покрытий для защиты от коррозии и наводороживания теплообменников. Теплообменники, изготовленные из стали 10, эксплуатировались в условиях воздействия конденсации паров серной кислоты, образующихся из продуктов сгорания сернистого топлива. Боридное покрытие, состоящее из двух слоев РеВ и РеВг, наносили при температуре 950 °С в виде порошкообразной смеси, содержащей 98 % В4С, 1,5 % А1Рз и 0,5 % парафина. Такое покрытие позволяет повысить в 10 раз коррозионную стойкость стали в наводороживающей сероводородсодержащей среде и одновременно повысить ее циклическую прочность. Испытания теплообменников, проведенные на стенде с переменным внутренним давлением при Ртах = 0,7 МПа с частотой 0,12 Гц показали, что без покрытия теплообменники вьщерживают от 20 до 160 тыс. циклов, с боридным покрытием - не менее 400 тыс. циклов Сб . В слабокислых минерализованных растворах в условиях периодического Смачивания цинковые покрытия, полученные электрохимическим и горячим способом, менее устойчивы, чем диффузионные слои из порошковой смеси. Оцинкованные диффузионным способом трубы в 25 раз устойчивее труб с цинковыми покрытиями из расплава и в 15 раз - с покрытиями, полученными электролитическим осаждением. [c.64]

    При проектировании технологической аппаратуры расчету на прочность подлежат аппараты колонного тина, теплообменники, вертикальные цилиндрические резервуары, реакторы, горизонтальные цилиндрические емкости под давлением и другая нестандартная аппаратура. Большое значение имеет при этом яе толыко принятый метод расчета, но и соответствие исходных данных нормативно-техническим требованиям Мии-химнефтемаша, Госгортехнадзора, Госстроя, МПС и т. п. в части нагрузок, материалов, габаритов, изготовления, контроля, приема, транспортировки, монтажа, испытания, эксплуатации и т. п. Этим вопросам следует уделять большое внимание, так как несоблюдение разнообразных технических условий приводит к выходу оборудования из строя с тяжелыми последствиями. К сожалению, согласование со смежными ведомствами разных исходных данных для расчета и проектирования занимает много времени. Особенно это относится к получению рекомендаций на материалы и защиту от коррозии. До сих пор еще нет нормативных расчетных величин прибавок на коррозию. [c.69]

    В электролизерах с графитовыми анодами температура должна быть не выше 30—40 °С. Для охлаждения внутри электролизеров ус анавливаются холодильники. В большинстве конструкций используются водяные змеевики, которые с целью защиты от коррозии соединяются электрически с катодом и работают как катоды со сравнительно небольшой плотностью тока, необходимой для катодной защиты металла змеевиков. Применяются также охлаждаемые катоды, хотя в целом это значительно усложняет конструкцию катода и электролизера. При наружной циркуляции электролита через выносной реактор регулирование температуры осуществляется обычно в наружных теплообменниках, устанавливаемых на пути циркуляции электролита перед поступлением его в электролизер. [c.397]

    Додиген 481 - углеводородорастворимый ингибитор, применяется для защиты от коррозии, вызываемой сероводородом, соляной кислотой, органическими кислотами, дистилляци-онных колонн, холодильников, трубопроводов, теплообменников. Внешний вид — темная прозрачная жидкость плотность гфи [c.43]

    В последние годы особенно интенсивно предпринимались шаги к внедрению анодной защиты металлов от коррозии в промышленность как в Советском Союзе, так и за рубежом. Впервые в Советском Союзе промышленная проверка анодной защиты теплообменников для 76—907о-ной серной кислоты была осуществлена в 1964 г., поскольку сернокислотные среды наиболее часто применяются в промышленных системах анодной защиты. [c.136]

    Аналогичные опыты со сплавом титана, содержащего 0,2% Палладия, показали почти в четыре раза ббльщие потери от коррозии. Тем самым подтверждена целесообразность применения для теплообменников технического титана с анодной защитой. [c.154]

    Со времени выхода в 1966 г. монографии Дж.И.Брегмана "Ингибиторы коррозии", в которой излагались преимущественно вопросы промышленного использования ингибиторов, в Советском Союзе не издавалось подобных серьезных зарубежных работ монографического или обзорного характера. Предлагаемая читателю книга Дж.С.Робинсона позволит в значительной мере восполнить этот пробел. Книга детально знакомит специалистов с патентной литературой США по ингибиторам корро ии, технологии их применения в различных отраслях промышленности. Подобная книга издается в СССР впервые. Составителем дано достаточно полное описание патентов за период 1976—1978 гг., в которых приведено более тысячи различных веществ-ингибиторов и ингибирующих композиций, которые могут-быть использованы почти в трех тысячах процессов. Обширная информация представлена по ингибированию коррозии в циркулирующих водных системах (теплообменниках, котлах, системах водоснабжения, охлаждения и т.п.), в жидкострх специального назначения (антифризах, гидравлических жидкостях, жидкостях для металлообработки, бурения, угольных суспензиях и т.п. . Значительное количество патентов, приведенных в книге, посвящено ингибированию красок, грунтовок, преобразователей ржавчины, полимерных материалов, каучуков и т.п., применяемых для защиты строительных конструкций из цемента, бетона, металла. Большая информация содержится по ингибиторам для топлив, смазок, масел, для систем нефть — вода, а также для процессов нефтедобычи и нефтепереработки. [c.6]

    Антикоррозионные или препятствующие ржавлению вещества могут использоваться в различных видах. Когда антикоррозионное вещество используется при кислотной промывке или травлении металлов, особенно стали, оно растворяется или диспергируется в водном растворе кислоты (соляной или серной), и раствор или дисперсия используется для предупреждения коррозии металлов. Ингибиторы успешно используются, когда бойлер или теплообменник промывается кислотой. В нефтяной промышленности для защиты оборудования в производстве, хранении, транспортировке, очистке и ректификации ингибиторы можно добавлять к нефти, чтобы избежать коррозию, вызываемую неорганическими солями, тидросульфидами, меркантаном и т.п. Когда ингибиторы используются для защиты от коррозии охлаждаемых водой колонн или бойлеров, их растворяют или диспергируют в охлажденной воде. [c.183]

    В колонне синтеза аммиака применяется очень простая и эффективная защита стенок от действия высокой температуры и водородной коррозии — поступающий холодный газ пропускают вдоль стенок колонны по всей ее высоте. Благодаря этому температура стенок не достигает даже 100°. Колонны могут быть изготовлены из качественной мартеновской стали, применение легированных сталей не является необходимостью. При такой простой защите стенок колонньг полезный объем ее значительно увеличивается. Количество загружаемого катализатора соста в-ляет 6 т (2,2 лiS). Внутренняя часть колонны (насадка) —трубчатого типа, в верхней ее части близко раз мещенные трубки заполнены катализаторохм на высоту 9 м, нижняя часть представляет собой теплообменник высотой 2,5 м. [c.553]


Смотреть страницы где упоминается термин Теплообменники защита от коррозии: [c.207]    [c.315]    [c.318]    [c.231]    [c.42]    [c.149]    [c.187]    [c.502]    [c.120]    [c.318]    [c.146]    [c.484]    [c.41]    [c.151]   
Технология серной кислоты (1985) -- [ c.135 ]




ПОИСК





Смотрите так же термины и статьи:

Защита от коррозии

Защита теплообменника

Защита трубок теплообменников высокого давления от коррозии

Теплообменники, коррозия при



© 2025 chem21.info Реклама на сайте