Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидравлическое сопротивление слоя

    При аксиальном вводе сырья в реактор выбор диаметра аппарата и высоты слоя катализатора определяется гидравлическим сопротивлением слоя катализатора и допустимым значением условной скорости подачи сырья на свободное сечение аппарата, при которой начинается шевеление катализатора. [c.79]

    Найдем гидравлическое сопротивление слоя по формуле (1,13)  [c.16]


    В общем случае зернистого слоя любой структуры, а не только состоящего из шаров одинакового диаметра с1, гидравлическое сопротивление слоя также целесообразно описывать интерполяционной формулой типа [c.45]

    Рис. п. 12. Экспериментальные данные [74] зависимости коэффициента гидравлического сопротивления слоя шаров от критерия Рейнольдса. [c.61]

    Большое внимание на качество катализатора оказывает способ его получения. Поскольку каталитическая реакция протекает на поверхности, целесообразно получить катализатор с максимально развитой поверхностью с большим количеством пор. Для разных реакций оптимальными могут быть узкие или, наоборот, более широкие поры, а также их комбинации. Не менее важны форма и размер зерен катализатора — от этого зависят удельная производительность, гидравлическое сопротивление слоя катализатора и конструкция реакционных аппаратов (со стационарным, движущимся или псевдоожиженным слоем катализатора). Кроме того, сама активность единицы поверхности катализатора зависит не только от его химического состава, но и от способа его приготовления. [c.84]

    При прохождении через патрубки, отверстия колпачков и слой жидкости на тарелке парам приходится преодолевать местные сопротивления собственно тарелки и гидравлическое сопротивление слоя жидкости. [c.234]

    При выборе высоты рабочей зоны учитывают, что с увеличением Яр растет как нагрузка на нижние слои катализатора, так и гидравлическое сопротивление слоя катализатора. Принято считать, что высота Нр представляет собой расстояние от середины разделительной зоны до обреза вертикальных трубок, по которым катализатор поступает в крекинг-зону. [c.248]

    Для удовлетворительного распределения газового потока необходимо соблюдать определенное соотношение между гидравлическими сопротивлениями слоя и решетки. Минимально допустимое гидравлическое сопротивление решетки АР может быть вычислено по формуле [c.171]

    Проблемы поддержания необходимого давления в реакционном аппарате и создания в нем этого давления носят чисто конструктивный характер. Если эффективность процесса возрастает с увеличением давления, предел повышению рабочего давления в реакторе ставит лишь одновременное удорожание аппарата. Удачное конструктивное решение позволяет поднять допустимый предел давления и тем самым интенсифицировать промышленный процесс. Перепад давлений внутри реакционной зоны может быть вызван гидравлическим сопротивлением слоя катализатора. Отрицательный эффект последнего, однако, связан в основном не с созданием градиента давлений, а с увеличением энергетических затрат на движение потока. [c.262]


    Допускаемое гидравлическое сопротивление слоя 2000 Па [c.310]

    Изменение объема, в ходе реакции. Изменение объема потока, а следовательно, и его скорости в ходе реакции, т. е. по длине слоя катализатора, может произойти из-за изменения температуры, давления, вследствие гидравлического сопротивления слоя и от изменения общего числа молей в ходе реакции. [c.289]

    При восходящем движении ожижающего агента через слой твердых частиц перепад давления с увеличением скорости потока и первоначально растет (рис. П-1, а). Зависимость между перепадом давления и скоростью потока остается такая же, как для неподвижного слоя, причем в случае мелких частиц сохраняется линейная зависимость Кармана — Козени. Пусть скорость потока достигла величины, при которой гидравлическое сопротивление слоя становится равным весу твердых частиц, приходящихся на единицу площади поперечного сечения Тогда дальнейшее повышение скорости вызовет слабое перемещение частиц слоя вверх. Частицы перестраиваются таким образом, [c.38]

    Недостатком гетерогенного варианта процесса демеркаптанизации является необходимость применения в качестве носителя активированного угля, что усложняет технологию процесса из-за недостаточно высокой механической прочности угля, возможности блокировки пор угля нафтенатами. Для периодической регенерации угля в технологической схеме предусмотрена промывка угля раствором уксусной кислоты. Кроме того, большое гидравлическое сопротивление слоя угля вызывает необходимость увеличения размеров реактора. [c.40]

    Скорость фильтрования Иф принимается по допускаемому гидравлическому сопротивлению слоя катализатора (табл. 5.5) в зависимости от порозности катализатора (е) и эквивалентного диаметра каналов слоя катализатора (1з. Конечная температура катализатора Тк рассчитывается по формуле [c.309]

    Другое важное преимущество кипящего слоя связано с возможностью использовать мелкие частицы катализатора, не увеличивая гидравлического сопротивления слоя. Благодаря применению мелких частиц устраняется внутридиффузионное торможение. [c.269]

    Трубчатые реакторы. Стабильность процесса в трубчатом реакторе определяется в основном величиной внутреннего диаметра трубки (ВДТ), При увеличении ВДТ конструкция реактора становится проще и возможно увеличение его мощности, но при этом ухудшается стабильность аппарата, выражающаяся, например, в увеличении параметрической чувствительности и величины динамического заброса [37, 38]. Решающими факторами при выборе максимального ВДТ для экзотермических процессов являются параметрическая чувствительность, динамические характеристики, допустимое гидравлическое сопротивление слоя катализатора, избирательность процесса п точность стабилизации входных параметров, которые определяются из анализа стационарных и нестационарных процессов в трубках разного диаметра. Для процессов эндотермических и протекающих вблизи равновесия определяющими параметрами являются, как правило, гидравлическое сопротивление и мощность аппарата. Максимальные значения ВДТ для процессов окисления метанола в формальдегид — 25 мм, окислительного дегидрирования н-бутенов — 21 мм, синтеза винилхлорида при концентрированном ацетилене — 55 мм и разбавленном — 80 мм [38], дегидратации <к-окси- [c.14]

    Гидравлические расчеты проводят для определения гидравлического сопротивления слоя продукта в зоне печи. [c.214]

    Интерес к фигурным гранулам катализатора объясняется увеличением поверхности контакта зерна по сравнению с традиционной цилиндрической формой гранулы при одновременном снижении гидравлического сопротивления слоя. [c.262]

    Высота слоя подвижной пены или газо-жидкостной эмульсии и гидравлическое сопротивление слоя почти не зависят от геометрических размеров, которые являются определяющими для барботажного режима. [c.349]

    На рис. 162, г — показано влияние размера гранул адсорбента на длину зоны массопередачи. Чем короче зона массопередачи, тем больше скорость адсорбции и лучше показатели адсорбционного процесса. Поэтому всегда нужно применять адсорбенты наименьшего размера. Размер гранул адсорбента должен лимитироваться величиной гидравлического сопротивления слоя. В большинстве промышленных установок переработки природных газов применяются адсорбенты с размером гранул не более 14 меш. [c.242]

    Для нормального равномерного распределения потока газа по сечению башни высота слоя поглотителя должна быть около 3 м. При такой высоте гидравлическое сопротивление слоя обеспечивает хорошее распределение в нем газа. Слой поглотителя высотой более 3 м уплотняется, и его гидравлическое сопротивление значительно возрастает. Однако не следует принимать и слишком малую высоту слоя, так как чем она меньше, тем чаще приходится заменять поглотитель новым. [c.282]


Рис. 5.18. Гидравлическое сопротивление слоя насадки высотой 100 мм Рис. 5.18. <a href="/info/68938">Гидравлическое сопротивление слоя насадки</a> высотой 100 мм
    Слишком высокая скорость газа в аппарате может явиться причиной большого гидравлического сопротивления слоя, ненормального уплотнения его и проскока неочищенного газа раньше, чем вся гидроокись железа прореагирует с сероводородом с образованием сульфида железа или свободной серы. [c.282]

    Реакторы с неподвижным слоем имеют некоторые недостатки. К ним. можно отнести такие как 1) трудность осуществления оптимального или близкого к нему температурного профиля по высоте слоя катализатора 2) трудности осуществления равномерного распределения подачи газа на слой катализатора 3) увеличение гидравлического сопротивления слоя с уменьшением размеров зерен катализатора, для того чтобы достичь увеличения поверхности контакта 4) необходимость смены катализатора. [c.127]

    Ермакова А. L., Слинько М. Г., Гидравлическое сопротивление слоя активированного угля при прохождении через него восходящего газожидкостного потока, Хим. пром., № 3, 52 (1967). [c.587]

    Для снижения гидравлического сопротивления слоя потоку в химической технологии применяют насадки из элементов со сквозными отверстиями и каналами — кольца Рашига, седла Берля (см. рис. I. 1) и др. Повышенную порозность имеют также слои из частиц неправильной формы с углами. Такие элементы могут укладываться в высокопористые скелетные образования. Подробная сводка значений а для насадок из элементов различной формы приведена в [1, стр. 231 Удельная поверхность одиночного шара — [c.12]

    Для достижения высокой активности первостепенное значение имеют два фактора общая внутренняя поверхность катализатора и внешняя поверхность экструдата. Последний фактор указывает, что реакция протекает в диффузионной области. Чем меньше размер экструдата, тем выше его активность. Но при этом растет гидравлическое сопротивление слоя катализатора, а на повышение давления газа для преодоления этого сопротивления требуются дополнительные затраты. Поэтому нужно учитывать влияние размера и формы экструдата, а также найти компромисс между величинами внутренней и внешней поверхности. Внутренняя поверхность в основном регулируется за счет изменения количества добавляемого оксида кремния. Влияние количества оксида кремния на удельную поверхность катализаторов видно из табл. 1. Хотя общая поверхность катализатора постоянно растет с увеличением содержания 5102, поверхность металлического железа, измеренная по хемосорбции СО после восстановления катализатора, уменьшается, начиная с определенного содержания 5102. [c.172]

    Пористая структура и размеры зерна катализатора через, диффузионные явления, прежде всего влияют на активность и избирательность катализатора. Эти вопросы рассматривались в главе III. Однако структура катализатора влияет не только на эти свойства. Она определяет в значительной мере механическую прочность катализатора и тем влияет на егодолговечность. Скорость зауглероживания катализатора и скорость регенерации, также зависят от структуры пор катализатора. Форма и размер зерен определяют и - гидравлическое сопротивление слоя катализатора и следовательно энергетические затраты на транспорт потока. В отношении активности и селективности катализатора и сопротивления слоя можно в более или менее строгой форме применять теоретически обоснованные методы оптимизации структуры и формы, в отношении же остальных свойств, на которые влияют структура и форма, приходится применять названные выше методы эмпирической оптимизации или расчетного сравнения отдельных вариантов. [c.189]

    В. приведенных выше расчетах реакторов не были учтены некоторые факторы, существенно усложняющие расчеты. Например, к ним относятся такие факторы, как изменение объема потока в связи с изменением температуры реакции и гидравлическим сопротивлением слоя катализатора или вследствие протекания химической реакции, возникновение радиальных градиентов температуры в слое катализатора и т. п. Далее, выражение скорости реакции формальными уравнениями с эффективными коэффициентами хорошо оправды- [c.288]

    При подходе к рассмотрению соотношения (П. 48) с позиций внешней задачи модель ансамбля шаров) [39, 40] движение жидкости представляется как ряд последовательных обтеканий отдельных зерен слоя. Гидравлическое сопротивление слоя в целом складывается из сопротивления отдельных зерен движению жидкости и определяется зависимостью типа [c.46]

    Столь заметный разброс /э связан с тем, что (как указывалось еще в разделе I. 1) выбранные нами параметры порозность е и обтекаемая поверхность а, хотя и являются основными, но не полностью определяющими структуру зернистого слоя. Следует считать исключительной удачей, что остальные многочисленные структурные детали (распределение зерен по размерам и форме, укладка, характер и степень извилистости поровых каналов) сравнительно с е и а слабо сказываются на гидравлическом сопротивлении слоя. Тридцатипроцентный разброс точек около усредненных кривых типа (П. 61) является относительно небольшим, если учесть применимость этих формул на интервале изменения критерия Рейнольдса в 4 порядка (от 10 до 10 ) при изменении при этом значения коэффициента сопротивления /э на 2 порядка (от 0,5 до 50). [c.66]

    Пыль и слишком мелкие частицы должны выводиться из системы, так как их накопление в циркулирующей массе увеличивает гидравлическое сопротивление слоев катализатора и сопря-жено с чрезмерным уносом катализаторной кроппш потоком продуктов крекинга в ректификационную колонну, а газами регенерации в дымоходы. [c.45]

    Минимальная протяженность пути, который воздух проходит в слое катализатора, составляет 75 см. В нижней секции, служащей главным образом для охлаждения катализатора, эта длина nyTvi больше, чем в расположенных выше [108]. Гидравлическое сопротивление слоя возрастает с увеличением его толщины и скорости движения воздуха. [c.124]

    Катализатор — один из важнейших элементов контактных аппаратов, которому уделяется больнюе внимание. Наряду с требованиями к химической активности к нему нред1>являют требования механического порядка механическая прочность и стойкость к истира иию, размеры зерен катализатора должны быть одинаковы, не должно быть мелочи. При засыпке катализатора в полочные аппараты тщательно следят, чтобы слон был ровный, при загрузке катализатора в трубчатых аппаратах проверяют, чтобы гидравлическое сопротивление слоя в каж рй трубке было одинаковым. Как нpaви J o, газ в аппаратах направляют сверху вниз, чтобы поток газа принимал слой катализатора. При противоположном направлении [c.214]

    В данном случае адсорбция пронодится под давлением. Энергетические затраты на преодоление гидравлического сопротивления слоя должны быть несущественными по сравнению с затратами на сжатие газа. Поэтому оптимальные размеры адсорбера можно определить, исходя из минимального объема сорбента, т. е. при = 16 см/с. Отметим, что для определения высоты слоя сорбента нет необходимости определять полный профиль концентраций, достаточно найти распределение концентраций по длине слоя в узкой области вблизи концентрации проскока. [c.72]

    Интенсивность массопередачи к внешней поверхности зерен катализатора зависит от конструкции контактного аппарата. Ее можно повысить, увеличив линейную скорость потока. Однако одновременно возрастает гидравлическое сопротивление слоя. Скорость вну енней диффузии зависит только от структурь пористого каталнз тора н свойств реагирующей среды. Уменьшение размера зерен снижает отрицательные последствия внутридиффузионного торможеннй, позволяя полнее использовать реакционный объем. Однако при этом также повышается гидравлическое сопротивление слоя частиц. При переводе процесса в кипяпщй слой, где можно использовать мелкие частицы, не повышая гидравлического сопротивления слоя, возникают специфические затруднения с диффузией реагентов между различными частями потока газов. [c.263]

    Предотвращение прорыва газов из одного аппарата в другой, а также в систему траиспортирования катализатора, достигается прежде всего созданием затворов из самого катализатора. Для этого транспортные стояки выполняют в виде длинных вертикальных труб, гидравлическое сопротивление слоя катализатора в которых превышает перепад давления между аппаратами. Независимо от этого иа трубопроводе, связывающем регенератор с реактором, устанавливается азотный затвор, представляющий собой камеру, в которой создается давление азота, превышающее иа 266—399 кПа (20—30 мм рт. ст.) дав- [c.330]

    Проблема этой стадии очистки - забивка дисковых фильтров и небольшое время безостановочной работы установки. Она может быть решена введением на первом этапе очистки в реактор-смеситель совместно с глиной не(5ольших количеств мелкодисперсных адсорбентов, имеющих более жесткую структурную решетку, например, катализаторной пыли с установки каталитического крекинга Г-43-107 [3]. Это позволит снизить рост гидравлического сопротивления слоя адсорбента на дисковых фильтрах и увеличить время их работы до полной забивки. [c.170]

    Повышение каталитической активности катализатора путем использования энергосберегаюших катализаторов сложных геометрических форм позволит увеличить производительность реакторов дегидрирования. Увеличение внешнего диаметра фанул катализатора обеспечивает снижеште гидравлического сопротивления слоя за счет увеличения его порозности. [c.264]

    Гидродинамические неоднородности могут быть как внешними, так и внутренними. К внешним можно отнести возникающие в объемах реакторов отрывные течения и вихреобразования потоков из-за несовершенства конструкций внутренних устройств. Такпе неоднородности в слое могут быстро затухать [3—5], однако в ряде случаев генерируемые ими неравномерности химического превращения приводят к проникновению в глубь слоя неоднородностей температурных и концентрационных полей, что существенно снижает эффективность процесса [6—8]. Колебания газовой нагрузки в системе, рост гидравлического сопротивления слоя из-за отложений в нем пыли, механические вибрации реактора, приводящие к частичной ломке и истиранпю частиц катализатора, п другие воздействия способствуют неравномерной объемной усадке слоя с образованием каверн, пустот, свищей и т. п. [9, 10]. В последнее время опубликованы данные о неблагоприятном влиянии на протекание каталитических процессов частых пусков реакторов после их внеплановых остановок. Слой катализатора при этом испытывает периодические тедшератур-ные расширения—сжатия, которые приводят к неконтролируемому уплотнению слоя. [c.24]


Смотреть страницы где упоминается термин Гидравлическое сопротивление слоя: [c.37]    [c.68]    [c.325]    [c.340]    [c.266]    [c.129]    [c.487]    [c.195]    [c.216]    [c.42]   
Смотреть главы в:

Основы адсорбционной техники -> Гидравлическое сопротивление слоя




ПОИСК





Смотрите так же термины и статьи:

Гидравлическое сопротивление



© 2025 chem21.info Реклама на сайте