Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Олеиновая кислота, идентификация

    Муравьиная кислота — реактив для выделения платины и палладия, для отделения бериллия от алюминия и железа, для разделения вольфрама и молибдена уксусная кислота применяется для определения молекулярной массы веществ, для приготовления буферных растворов, как среда и ацетилирующее средство пропионовая кислота— для определения ароматических аминов антраниловая кислота — для обнаружения и гравиметрического определения кадмия, кобальта, меди, ртути, марганца, никеля, свинца и цинка бензойная кислота служит эталоном в колориметрии 2,4-диокси-бензойная кислота применяется для колориметрического определения железа, титана и других элементов лимонная кислота — в качестве сильного маскирующего комплексообразователя, для приготовления буферных смесей, определения белка в моче, как растворитель фосфатов при анализе удобрений молочная кислота — при полярографическом определении металлов, при электролитическом осаждении меди в присутствии железа, цинка и марганца нафтионовая кислота — для колориметрического определения нитрат иона, в качестве флуоресцирующего индикатора олеиновая кислота — для определения малых количеств кальция и магния, в титриметрическом анализе для определения жесткости воды пировиноградная кислота — для идентификации первичных и вторичных аминов, в микробиологии стеариновая кислота — для нефелометрического определения кальция, магния и лития сульфо-салициловая кислота — для колориметрического определения железа, в качестве комплексообразователя, для осаждения и нефелометрического определения белков трихлоруксусная кислота — как реактив на пигменты желчи и фиксатор в микроскопических исследованиях. [c.44]


    Инфракрасная спектроскопия дает полезную информацию относительно природы адсорбированного на иоверхности вещества, а при идентификации продуктов окисления информацию об условиях окисления поверхности минерала. Этот метод был впервые применен Френчем, Вейдсвортом, Куком и Катлером (1954) к исследованию флотации флюорита с использованием солей олеиновой кислоты в качестве флотационного реагента. Флюорит кальция в мелко раздробленном состоянии суспендировали в воде и обрабатывали раствором олеата натрия. После повторной промывки водой флюорит кальция снрессовыва.ти в таблетки с бромистым калием для ослабления рассеяния инфракрасного излучения. Затем записывали спектр такой таблетки. Было найдено, что органическое вещество дает полосу поглощения карбоксильной группы, и высказано предположение, что оно адсорбируется в основном в форме олеата кальция. Кро.ме [c.386]

    Белькевич П.И..Иванова Л.А..Каганович Ф.Л. - Изв.АН БССР.Сер.хин.,1969. 2, 96-98 РХХин.1969.22П45. Кислоты торфяного воска. Выделение и идентификация олеиновой кислоты нетодон газо-жидкостной хроиатографии. [c.206]

    Данные, полученные назависимо на двух колонках, объединяют для идентификации эфиров жирных кислот. Сначала необходимо измерить удерживаемые объемы на апьезоне и полиэфире гомологических рядов известных соединений, совсем не содержащих и содержащих одну, две, три и т. д. двойных связей. Затем строят график зависимости логарифмов удерживаемых объемов на апьезоне от логарифмов удерживаемых объемов на полиэфире. Получают семейство параллельных прямых, каждая из которых соответствует гомологическому ряду (фиг. 191). Так, точки на верхней прямой представляют эфиры ненасыщенных, жирных кислот с различным числом атомов углерода, точки на второй прямой сверху представляют гомологические ряды, содержащие одну двойную связь, и т. д. Затем определяют удерживаемые объемы неизвестного соединения на апьезоне и полиэфире и строят график зависимости логарифмов этих величин. Линия, на которую попадают полученные точки, показывает число двойных связей в молекуле. Положение же точки на линии говорит о числе атомов углерода в молекуле.. Последнюю величину можно проверить по графику зависимости логарифмов удерживаемых объемов от числа атомов углерода для данного гомологического ряда, к которому принадлежит соединение. Этот метод, как показано, надежен только для соединений с несопряженными двойными связями. Если предполагают, что пик соответствует ненасыщенному соединению, это можно проверить путем гидрирования пробы и проведения повторного хроматографического анализа (см. раздел А,III). Если исследуемый пик при повторном анализе не появляется на хроматограмме, то это соединение, по-видимому, было ненасыщенным. Бромирование также представляет собой хороший метод удаления ненасыщенных соединений при разделении продукта реакции на апьезоне. При разделении же на полиэфире продукты бромирования-моноенов, например олеиновой кислоты, могут дать три пика на хроматограмме [45]. [c.502]


    Чтобы определить положение двойной связи в углеводородной цепи, цепь расщепляют окислением или озонолизом и последующим хроматографическим разделением продуктов реакции. Цепь разрывается по месту двойной связи, и поэтому положение последней можно установить путем идентификации осколков. Олеиновая кислота, например, дает смесь пеларгоновой и азелаиновой кислот в соотношении 1 1, однако в результате побочных реакций могут образоваться и другие вещества [30]. Реактив для- окисления состоит из перманганата в уксусной кислоте [21] и смеси лерманганата с перйодатом [25]. Среди продуктов такого окисления обнаруживается большое число низших гомологов кислот, KOTopbie образуются при прямом расщеплении двойной связи [21]. В тех же случаях, когда проводят озонолиз с последующим окислением окисью серебра, очевидно, получают чистую фракцию продуктов первичного окисления, загрязненную незначительными количествами низших гомологов [5]. Метиловый эфир жирной кислоты растворяют в сухом хлороформе и в течение нескольких минут пропускают озоП в кислороде через раствор при температуре — 60°. Первичные продукты озонолиза затем окисляют окисью серебра в присутствии воды и образовавшийся продукт метилируют. Полученные эфиры разделяют на колонке, заполненной силиконовой смазкой на целите, при температуре 270° и скорости потока 145 мл мин. При использовании [c.571]

    Разделение жирных кислот бацилл туберкулеза методом газовой хромато1 ра-фии. Идентификация олеиновой кислоты. [c.183]

    Для идентификации фенилстеариновой кислоты, приготовленной фенилированием олеиновой кислоты, Кимура и Танигути [79] приготовили следующие кристаллические производные  [c.475]

    Эта реакция пригодна для идентификации циклогексена, пропилена, бутилена, 1-додецена, бензола, толуола, нафталина, аллилового и коричного спиртов, 2-метил-3-бутен-2-ола, аллил-бензола, камфена, 2-метил-1-гексена, олеиновой и коричной кислот, этилциннамата, дифенилоксида. Полученные кетоны могут быть идентифицированы также в виде семикарбазонов. [c.177]

    Идентификация жирных кислот хроматографией на бумаге. Полосу хроматографической бумаги (35x10 см) пропитывают 10%-ным раствором парафина в бензоле и высушивают в горизонтальном положении между листами фильтровальной бумаги. Затем на расстоянии 3 см,от узкого края бумаги наносят по капле 5%-ные эфирные растворы испытуемой смеси жирных кислот и образцов свидетелей (стеариновой, пальмитиновой, олеиновой и других кислот — см. стр. 36). В качестве растворителя в сосуд для хроматографии заранее заливают 90%-ный метиловый спирт, насыщенный парафином. Подготовленную бумагу укрепляют в сосуде и хроматографируют по восходящему способу 16—20 ч. [c.97]

    Глицериды и соли жирных кислот составляют основную часть относительно нерастворимых органических веществ в сточных водах. Основными компонентами жирнокислотной фракции являются насыщенные и ненасыщенные жирные кислоты с длинной цепью — лауриновая, миристиновая, пальмитиновая, стеариновая, олеиновая и линолевая [88, 89]. Значительную часть нерастворимых органических загрязнений составляют липидоподобные вещества, в том числе стерины и углеводороды. Липиды и липидоподобные вещества нерастворимы в воде и труднее разлагаются при обработке сточных вод, чем углеводы и белки. Поэтому значительные количества липидов минуют водоочистные сооружения и вносят заметный вклад в состав органических загрязнений поверхностных вод. Имеются весьма скудные сведения о превращениях относительно малорастворимых органических веществ (таких как липиды и липидоподобные вещества или жиры ), которые попадают в поверхностные воды частично из городских и промышленных стоков. Для лучшего понимания процессов разложения липидов и путей их удаления в установках для обработки сточных вод и природной воды нужно иметь аналитические методы для разделения липидов на классы и идентификации отдельных соединений в загрязненной воде. Такой подход отличается от обычного взгляда на липиды как на один широкий класс, включающий жиры, воска, масла и любые другие нелетучие вещества, экстрагируемые гексаном из подкисленной пробы канализационных или промышленных сточных вод [74]. [c.410]


Смотреть страницы где упоминается термин Олеиновая кислота, идентификация: [c.190]    [c.612]    [c.426]    [c.43]    [c.155]    [c.391]   
Лабораторное руководство по хроматографическим и смежным методам Часть 2 (1982) -- [ c.113 ]




ПОИСК





Смотрите так же термины и статьи:

Олеиновая кислота



© 2025 chem21.info Реклама на сайте