Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Жирные кислоты идентификация

    Индикаторы. Кислотно-основные индикаторы как реагенты для идентификации высокомолекулярных жирных кислот хорошо работают , если при хроматографии используются нейтральные растворители. [c.416]

    Характер аналитических задач, решаемых с помощью важнейшего из этих методов — инструментальной или регистрационной колоночной ЖХ,— определяется природой используемых стационарной и подвижной фаз, а также принципом детектирования элюатов. Универсальные детекторы (рефрактометрический, диэлькометрический, транспортные и др. [109, 111, 2541) использовались для количественного анализа самых различных ГАС (аминов [255, 256], порфиринов [257], жирных кислот [258, 259], фенолов [260], сернистых соединений [261 ]) в условиях адсорбционной или координационной хроматографии, а также для определения молекулярно-массового распределения высокомолекулярных веществ [69, 109, 262, 2631 при эксклюзионном фракционировании или разделении на адсорбентах с неполярной поверхностью, например, на графитирован-ных углях. Качественная идентификация элюируемых веществ в этих случаях проводится по заранее установленным параметрам удерживания стандартных соединений и при изучении смесей неизвестного состава часто затруднена из-за отсутствия таких стандартов. Групповая идентификация ГАС отдельных типов существенно облегчается при использовании специфических селективных детекторов спектрофотометрических (УФ или ИК), флю-орометрического [109, 111, 254 и др.], пламенно-эмиссионного [264], полярографического [111], электронозахватного [265] и др. [c.33]


    Аналитическая химия полиеновых жирных кислот. (Идентификация к-т Сц, — С22.) [c.55]

    Разделение и идентификация высших предельных жирных кислот с помощью хроматографии на бумаге. Общие сведения. С помощью описываемого мето- [c.171]

    Обычно определяют только общее содержание детергентов непосредственно спектрофотометрическими методами [74]. В табл. 12.22 приведены примеры специфического отделения неразветвленных алкилсульфонатов от муравьиной кислоты при разделении жирных кислот. Идентификацию отдельных видов детергентов проводят с помощью ЖХ. Эти методики могут найти применение при анализе вредных примесей в воде. . [c.436]

    Эта реакция используется для установления положения двойной связи в цепях жирных кислот. Идентификация фрагментов, полученных в результате озонолиза и последующего гидролиза в окислительных условиях, также позволяет сделать заключение о структуре исходной жирной кислоты. С этой целью может быть проведено также окисление перманганатом калия. В мягких условиях двойные связи окисляются с образованием гликолей [c.61]

    При анализе смесей, которые содержат несколько представителей одного или разных классов химических веществ или для которых подобный состав может быть получен путем предварительной обработки, возможно использование других, очень простых путей идентификации, кроме метода добавления чистых веществ и сравнения величин удерживания. Уже в 1952 г. Джеймс и Мартин установили на примере эфиров жирных кислот, что логарифмы объемов удерживания в пределах одного гомологического ряда линейно возрастают при увеличении молекулярного веса или числа углеродных атомов. Позднее это было подтверждено Реем (1954) на примере других гомологических рядов. В общем виде соотношение можно записать так  [c.236]

    Капиллярная ГХ может быть эффективно использована для определения цитологических жирных кислот, образующихся под действием бактерий [21]. Проводят сравнение хроматографических профилей бактериальных жирных кислот со стандартными профилями, хранящимися в памяти компьютера. Этот метод применим для всех чистых культур бактерий. По сравнению с традиционными методами микробиологической идентификации этот метод занимает меньше времени и более экономичен. Иа рис. 8-26 представлены хроматограммы градуировочного стандарта и образца бактерий. В принципе, оиисаииый метод может быть применен и в других областях, где требуется получить профиль метаболитов, например при определении стероидов или органических кислот в моче. [c.121]


    Па рис. 3-33 приведена хроматограмма стандартной смеси меновых эфиров жирных кислот [45]. Эта смесь используется для идентификации в микробиологии. Относительное стандартное отклонение Sr времен удерживания составляет 0,02-0,05% (п = [c.54]

    При разделении на пористых полимерных сорбентах на основе сополимеров стирола и дивинилбензола наблюдается линейная зависимость логарифма исправленного удерживаемого объема от числа атомов углерода в молекулах для гомологических рядов нормальных алканов, ароматических углеводородов, спиртов, кетонов, жирных кислот [20—28]. Логарифм исправленного удерживаемого объема является также линейной функцией общей поляризуемости, температуры кипения, молекулярного веса, стандартной энтропии молекул гомологических рядов. Линейный характер полученных зависимостей позволяет использовать их для идентификации неизвестных соединений (рис. 3). [c.30]

    Анализируемые соединения могут содержать цис- и транс-двойные связи, тройные связи, сопряженные структуры, разветвленные или циклические структуры, эпокси- и другие группировки, и поэтому их идентификация методом ГХ по временам удерживания считается ненадежной обычно для обнаружения ненасыщенных соединений, определения их ненасыщенности и установления структуры прибегают к помощи гидрирования. Так, например, метиловые эфиры жирных кислот, различающиеся по числу углеродных атомов и ненасыщенных связей в молекуле, во многих случаях имеют почти одинаковые времена удерживания очень часто смеси этих соединений удается разделить и количественно определить с использованием гидрирования. [c.213]

    Наличие тройной или двойной связи в молекуле жирной кислоты обычно устанавливают методами ГЖХ, спектроскопии ЯМР или КР, конфигурацию двойной связи—методами ИК-, КР- или ЯМР-спектроскопии. Положение кратных связей наиболее часто определяют окислительным расщеплением с последующей идентификацией образующихся фрагментов методом ГЖХ. [c.23]

    Лучшим методом анализа растворителей является метод газожидкостной хроматографии (ГЖХ) [261]. Разработаны методики, облегчающие идентификацию по объемам удерживания. Джемс и Мартин использовали при анализе кислот нормального и изостроения связь между логарифмом объема удержания и числом углеродных атомов. Аналогичное соотношение положено в основу анализа жирных кислот, нормальных парафинов, спиртов и кетонов [262]. Идентификацию углеводородов проводят методом ГЖХ с применением индексов удерживания [263].  [c.148]

    Ацильные производные первичных ароматических аминов могут быть получены из аминов и жирных кислот почти таким же образом, с тем лишь отличием, что продукт реакции обычно выделяют выливанием реакционной смеси в воду, при чем плохо растворимое ацильное производное получается в кристаллическом состоянии. Этот способ часто применяется для идентификации жирных кислот. В этом случае, вместо избытка кислоты следует применять небольшой избыток амина. [c.262]

    Разрыв связи С—С при окислении может происходить в любой точке молекулы, поэтому в оксидате содержатся продукты самого различного молекулярного веса. В оксидате были обнаружены и идентифицированы следующие летучие жирные кислоты муравьиная, уксусная, пропионовая, масляная,валерьяновая, капроновая и далее вплоть до 10 углеродных атомов в цепи. Водонерастворимые нелетучие кислоты представляют собой очень сложную < месь. Помимо жирных кислот, оксидат может содержать окси-кпслоты, лактоны, ангидриды, альдегидо-кислоты, кетоно-кислоты, альдегиды, спирты и простые эфиры [328—336]. Твердые кислоты более чем на 80% состоят из предельных соединений с молекулярным весом от 145 до 300 и на 50% — из соединений с числом углеродных атомов не выше 14 [339]. Сообщалось об идентификации миристиновой, пальмитиновой, стеариновой, арахиновой, лигно-цериновой и изоиальмитиновой кислот [340]. Образование двухосновных кислот незначительно, хотя янтарную кислоту удалось выделить из оксидата [341, 342]. Неокисленный остаток по впеш- [c.587]

    К настоящему времени подобраны стационарные фазы, позволяющие разделять методом ГЖХ ГАС практически любого класса и решать самые сложные стрз ктурные проблемы, вплоть до установления оптической конфигурации молекул (например, аминокислот [164], изоирепоидных жирных кислот и их эфиров [269]. Получены необходимые для идентификации экспериментальные данные по параметрам удерживания характерных для нефтей летучих ГАС, в том числе тиолов [270], диалкилсульфидов [271], тиацикланов [272], аминов [273, 274], производных пиридина и хинолина [274—276], свободных жирных [277] и ароматических [278] кислот и их метиловых эфиров, фенолов [279, 280], кето-нов [281], спиртов [282] и т. д. Выведены корреляции между хроматографическим поведением и строением ГАС отдельных типов. Надежность идентификации чисто газохроматографическими средствами можно значительно повысить путем изучения так называемых спектров хроматографического удерживания [283]. На основе характеристик удерживания идентифицирован, например  [c.34]


    Кроме нафтеновых кислот, в нефтяных дистиллятах обна- ружены также кислоты жирного ряда состава СдНгпОа. Наиболее ранние указания (1883 г.) на это имеются в работе В. В. Марковникова и В. Оглоблина [116], которые упоминают о выделении уксусной кислоты и о присутствии некоторых высших жирных кислот во фракциях, полученных от разгонки кавказских сырых нефтей. Жидков [117] в 1899 г. при изучении кислот из грозненских нефтей нашел в них низшие алифатические кислоты. Однако большинство работ об идентификации алифатических кислот появилось после 1925 г., особенно за десятилетие 1930—1940 гг. [c.76]

    Интересно отметить, что многие исследователи находили жирные кислоты в продуктах крекинга нефтяных фракций. В 1935 г. Виллиаме и Рихтер [127] описали выделение и идентификацию н-гептановых, н-октановых и и-нонановых кислот из продуктов крекинга нефти Западного Тексаса, образовавшихся, по мнению авторов, при разложении высших нафтеновых кислот. [c.81]

    Как правило, гидроксикислоты входят в состав липидов бактериальных клеток. Их представителями являются 2-гидроксипаль-митиновая, 2-гидроксистеариновая и 2-гид-роксилигноцериновая (цереброновая) кислоты. Следует отметить, что состав бактериальных липидов отличается большим разнообразием и спектр жирных кислот разных видов приобрел значение таксономического критерия для идентификации организмов. [c.288]

    Первый способ — идентификация по относительному удерживаемому объему Уг(отн). Относительный удерживаемый объем (отю представляет собой отношение V, анализируемого вещества к У стандарта в одних и тех же условиях. Относительный удерживаемый объем стандарта принимается за единицу. Международной комиссией по номенклатуре (на I симпозиуме по газовой хроматографии, Лондон, 1956 г.) был предложен ряд стандартных веществ. В качестве стандартов наибольшее распространение получили пентан (для углеводородов), масляная кислота (для жирных кислот), метиловый эфир миристиновой кислоты (для эфиров высших жирных кислот), Внутри одного класса соединений график зависимости lg Уг(отн) обычно представляет собой прямую линию. [c.117]

    При добавлении щелочного раствора о-бромадетофенона или п-бромфенацил бромида к нейтрализованной содовым раствором карбоновои кислоте получаете, хорошо кристаллизующийся из этилового спирта эфпр ю-оксиацетофенона эта реан цшг пригодна для идентификации жирных кислот. [c.183]

    Значение масс-спектрометрии для установления строения жирных кислот постоянно возрастает. В сочетании с ГЖХ она представляет собой один из наиболее эффективных методов идентификации химических соединений, поскольку требует очень небольшого количества исследуемого вещества. Хромато-масс-спектро-ртоия становится еще более эффективной при применении ЭВМ (см. разд. 25.1.6.4). [c.23]

    Иногда для получения информативных данных достаточно даже простого различия в строении молекул субстрата. Например, во многих (но не во всех) организмах вклад стартового ацетил-КоА в синтез жирных кислот может быть прослежен с помощью пропионовой или даже изомасляной кислоты путем идентификации примеси жирных н-Сг +г или изо-Сг,г-кислот в образующейся смеси жирных кислот. Однако этим методом нельзя обнаружить вклад ацетил-КоА в построение оставшейся части скелета жирных кислот, поскольку фермент, превращающий аце-тил-КоА в малонил-КоА, более специфичен, т. е. более тонко ощущает разницу между субстратами. Последняя ситуация более ти- [c.466]

    О перспективности микробиологических приложений парофазного анализа свидетельствует тот факт, что им была посвящена значительная часть докладов на международном симпозиуме по использованию хроматографии в микробиологии (Лунд, Швеция, октябрь 1976 г.). Судя по опубликованным за последние годы обзорам [54, 57] и оригинальным работам [58—62], наибольшее внимание привлекает применение парофазного анализа для идентификации анаэробных бактерий и диагностики инфекционных заболеваний. Большинство исследований посвящено анализу летучих жирных кислот [57,59,62], а также спиртов [58,59,61], аминов [58], метилмеркап-тана и диметилсульфида [60,61]. [c.266]

    Возможна и более детальная классификация анаэробов по спектру жирных кислот, включая высшие гомологи, а также окси- и двухосновные кислоты в виде летучих эфиров. Однако прямой анализ клинического материала иногда не позволяет диагностировать заболевания из-за высокого фонового содержания летучих веществ, различия в патогенности микроорганизмов, наличия смешанных инфекций и влияния терапевтических средств. В этих случаях идентификация микробов может быть осуществлена после их дополнительного выращивания in vitro. Изолированные колонии на обогащенной среде в стандартных условиях дают постоянный и хорошо воспроизводимый состав жирных кислот. Высокая чувствительность газовой хроматографии позволяет свести инкубационный период до минимума и получить результат анализа через несколько часов. [c.268]

    Для разделения высших жирных кислот в настоящее время чаще всего используют метод ГЖХ, хотя в случае геометрических изомеров ненасыщенных кислот для их идентификации обычно применяют ТСХ на пластинках, покрытых смесями кремневая кислота-AgNOj. [c.379]

    Вместо галоидного алкила можно в этой реакции применять хлоруксусную кислоту или какие-либо другие галоидозамещенные жирные кислоты. Реакция между хлоруксусной кислотой и натриевыми солями фенолов также была предложена в нижеследующем виде для идентификации фенолов i.  [c.108]

    N-Зaмeщeниe. Подобно дифениламину, соединение Т-1 и его производные могут ацилироваться, алкилироваться и арилироваться. Ацетилирование соединения Т-1 уксусным ангидридом дает с прекрасным выходом М-ацетиль-ное производное [3201. Было предложено использовать М-ацильные производные соединения Т-1 для идентификации хлорангидридов жирных кислот, хотя все эти производные плавятся около 80° [348]. М-Сульфонильные производные вследствие слабой основности соединения Т-1 лучше всего, конечно, получать в растворе пиридина [349]. Был получен также с прекрасным выходом хлорангидрид фентиазин-Ы-карбоновой кислоты из фосгена и соединения Т-1, а также описаны многие Ы-карбоксамидопроизводные [350]. [c.573]

    Еще один пример, который следует отнести ко второй категории,— это идентификация одного поверхностно-активного вещества, о котором было сообщено, что оно является соединением жирной кислоты и этиленоксида (КС00[СН2СН20]л Н). Поскольку это соединение является сложным эфиром, эквивалентная масса его была определена по реакции омыления. Эквивалентная масса оказалась такой, что либо К, либо л должны быть небольшими. Однако, так как проба растворима в воде, число х должно быть достаточно большим. Было проведено определение связанного этиленоксида его содержание оказалось достаточно большим. Следовательно, вопреки данной ранее информации К не может относиться к жирной кислоте. Размер группы R был рассчитан, исходя из эквивалентной массы и содержания этиленоксида. Полученный результат был подтвержден анализом натриевой соли кислоты, выделенной из спиртового раствора после омыления, и определением эквивалента карбоксилата натрия методом сожжения. Эквивалентная масса кислоты, рассчитанная по этой величине, хорошо совпала со значением, рассчитанным из эквивалентной массы сложного эфира с учетом поправки на содержание этиленоксида. Зная эквивалентную массу кислоты, можно подобрать образцы всех известных доступных кислот приблизительно такой же эквивалентной массы и провести сравнение, необходимое для абсолютной идентификации. [c.622]

    Метод ХМС широко используется для идентификации жир ных кислот в биологических объектах Чаще всего кислоты для анализа переводятся в метиловые эфиры Однако масс спектры этих производных кислот характеризуются интенсивными пика ми в области низких массовых чисел, отражая, как правило, сложноэфирную группировку, а не структуру кислотного ради кала, поэтому они не обеспечивают надежной идентификации и достаточной чувствительности определения Было предложе но использовать ТБДМС эфиры жирных кислот, которые обла дают лучшими хроматографическими и масс спектральными характеристиками [140] Почти во всех масс спектрах этих производных максимальный пик отвечал иону (М — С4Нд)+, интенсивность этого пика была особенно высока в масс спек трах производных моно, ди и триненасыщенных органических кислот При анализе методом ИМХ предел обнаружения нахо дится на уровне ниже нанограммового [c.81]

    Наружная мембрана не содержит компоненты дыхательной цепи. С ней связаны ферменты, участвующие в удлинении молекул насыщенных жирных кислот, а также ферменты, катализирующие окисление, не связанное с синтезом АТФ, например моноаминоксвдаза и некоторые другие. Моноаминоксида-за может служить маркерным ферментом для идентификации наружной мембраны митохондрий. [c.198]

    Матрикс содержит ферменты цикла трикарбоновых кислот, р-окисления жирных кислот, синтеза мочевины, аспартатаминотрансферазу, глутаматде-гидрогеназу, фосфоенолпируваткарбоксикиназу и др. Определение активности глутаматдегидрогеназы и малатдегидрогеназы часто используют для идентификации матрикса митохондрий. [c.198]


Смотреть страницы где упоминается термин Жирные кислоты идентификация: [c.138]    [c.129]    [c.138]    [c.511]    [c.71]    [c.69]    [c.69]    [c.505]    [c.39]    [c.318]    [c.318]    [c.130]   
Химико-технические методы исследования Том 1 (0) -- [ c.238 ]

Методы органической химии Том 2 Издание 2 (1967) -- [ c.259 ]

Методы органической химии Том 2 Методы анализа Издание 4 (1963) -- [ c.259 ]




ПОИСК







© 2024 chem21.info Реклама на сайте