Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Липиды разделение

    Небольшие органические молекулы, находящиеся в живых тканях, можно разделить на две большие группы. Одна из них включает водорастворимые вещества, такие, как аминокислоты и сахара, нерастворимые в апротонных растворителях (хлороформе или эфире). Другая группа охватывает жирорастворимые вещества, которые растворяются в хлороформе, эфире или других органических растворителях, но обычно не растворяются в воде. Эти соединения носят общее название липиды. Ясно, что такое грубое разделение, основанное на способности к растворению в определенных типах растворителей, не учитывает общие специфические структурные особенности соединений. Внутри каждой обширной группы веществ можно выделить ряды соединений с общими функциональными группами и характерными структурными особенностями. Низкая растворимость в воде предполагает, что в липидах преобладают неполярные (т. е. углеводородные) фрагменты, а высокополярные группы и группы, обладающие способностью образовывать водородные связи, или вообще отсутствуют, или составляют незначительную часть молекулы. Среди соединений, входящих в класс липидов, встречается немало таких, которые имеют чрезвычайно большое значение для биологии. К ним относятся витамины А и О (разд. 22.2) и стероидные гормоны (разд. 22.2), находящиеся в следовых количествах и все вместе составляющие лишь очень малую часть от общего содержания липидов в любой живой системе. [c.329]


    Испытание на радиоактивность меченных С липидов, разделенных при помощи газовой хроматографии. [c.165]

    Методы газовой хроматографии очень эффективны для разделения многих компонентов тканей и биологических жидкостей (липидов, аминокислот, углеводов), эфирных масел, циклических соединений, атмосферных газов и т. п. [c.148]

    Учитывая это, нами предложена технология комплексной переработки плодов шиповника, которая предусматривае разделение плодов в самом начале процесса на две фракции- околоплодные оболочки и семена и дальнейшую их переработку раздельно оболочку- на обогащенный пектиновыми веществами сироп, семена- на масло шиповника, а шрот (остаток после извлечения липидов)- на кормовую добавку в рационы пушных зверей. [c.170]

    В основе адсорбционной хроматографии лежит разделение липидов в соответствии со степенью их полярности. Адсорбентом при тонкослойной хроматографии чаще всего служит силикагель. При колоночной хроматографии широкое применение получили три адсорбента силикагель, окись алюминия, флоризил (силикат магния). Прочность взаимодействия липида с адсорбентом определяется главным образом водородными и ионными связями, в меньшей степени — силами Ван-дер-Ваальса. [c.69]

    При хроматографии 1—3 г липидов пользуются колонками диаметром 35 мм и длиной 50—70 см. При разделении больших количеств применяют большие колонки, при этом максимальное весовое отношение липид/адсорбент не должно превышать 1 50 (для фосфолипидов 1 100). Отношение высоты колонки к площади ее сечения должно быть равно 5 1, длина колонки не должна быть больше 1 м. [c.70]

    Разделение и проявление. Пластинку помещают в камеру, погружая ее в растворитель на 5 мм. Камеру герметически закрывают. Разгонка продолжается 1 ч при комнатной температуре (для лучшего разделения липиды можно разгонять повторно, предварительно высушив пластинку). Пластинку высушивают на воздухе в течение 30 мин и хроматограмму проявляют, осторожно опрыскивая ее из пульверизатора 10%-ным спиртовым раствором фосфорномолибденовой кислоты, и затем (через 1 мин) выдерживают ее в сушильном шкафу при 80—100°С до появления на желтом фоне синих пятен липидов. Избыток проявителя может привести к заметному увеличению окраски фона. [c.73]

    Иммобилизация липидов может происходить в результате латерального фазового разделения, приводящего к образованию гелевой фазы, или при их взаимод. с белками. Предполагается, что интегральные белки окружены пограничным слоем липидных молекул (т. наз. аннулярные липиды), подвижность к-рых ограничена или, по крайней мере, нарушена в результате контакта с неровной пов-стью белковой глобулы. [c.30]


    ТСХ применяют для разделения и анализа как орг., так и неорг. в-в практически всех неорг. катионов и мн. анионов, в т. ч. близких по св-вам ионов благородных металлов, РЗЭ, а также полимеров, лек. ср-в, пестицидов, аминокислот, липидов, алкалоидов и т. д. С помощью ТСХ удобно анализировать микрообъекты (малые кол-ва в-в), оценивать чистоту препаратов, контролировать технол. процессы и состав сточных вод, изучать поведение разл. ионных форм элементов, предварительно подбирать условия для колоночной хроматографии. [c.609]

    Чрезвычайно упрощенная, но в первом приближении еще разумная, модель бислойной мембраны выше Тс основана на предположении, что углеводородные цепи внутри мембраны ведут себя как жидкий углеводород. Для частично закрытой бислойной мембраны такая модель предполагает наличие упругого отклика от зон липидных головных групп и жидкого поведения углеводородной области. Соответственно вклады в у будут резко возрастать из-за разделения головных групп липида, в то время как толщина мембраны будет меняться с деформацией так, чтобы сохранить объем мембраны приблизительно постоянным. [c.330]

    Другие примеры разделений на нормальных фазах — групповые разделения алканов или липидов, а также разделение стероидов, сахаров и жирорастворимых витаминов. [c.281]

    Современная биохимия, занимающаяся исследованием химических реакций, которые протекают в живых клетках, представляет настолько широкую и сложную область, что включает в себя почти все отрасли химии и биологии. Создание вводного курса по этому предмету — весьма нелегкая задача, и я никогда бы за нее не взялся, если бы стремился только улучшить существующие учебники. Но я убежден, что курс биохимии, предназначенный для широкого круга студентов и преподавателей, должен быть создан на принципиально новой основе. Вместо того, чтобы делить книгу на части, посвященные описанию отдельных классов химических соединений — белков, нуклеиновых кислот, липидов и углеводов, — я опирался при таком разделении на типы химических реакций, протекающих в клетках. Неизменно подчеркивая биологические аспекты рассматриваемых явлений, я стремился проследить химическую основу различных физиологических явлений. [c.7]

    Часто в качестве материала, которым наполняют колонки, используют силикагель, содержащий большое количество воды разделение компонентов в этом случае происходит за счет их распределения между водной фазой, иммобилизованной силикагелем, и водой, протекающей через колонку. Для разделения липидов применяют колонки с обращенной фазой их наполняют силикагелем, окисью алюминия или другим инертным материалом, пропитанным неполярной жидкостью. В роли подвижной фазы в этом случае выступает более полярный растворитель. [c.160]

    Так, например, достигнуты большие успехи в извлечении растительных белков. Этому предшествовали в первую очередь работы по экстрагированию липидов (масла и жиры), а также извлечению углеводов (сахара и крахмалы). Сохраняет актуальность и процесс разделения компонентов сельскохозяйственного сырья для их более рационального использования в пищевой промышленности в форме изолятов, самих по себе функционально привлекательных, включаемых в состав различных смесей. [c.6]

    Липиды разных типов (см. приложение 8) по-разному ведут себя в гидратированных средах. Действительно, в воде некоторые липиды, такие, как углеводородные цепи жирных кислот и триглицериды, образуют полностью разделенные фазы, тогда как главные липиды мембран (фосфолипиды и гликолипиды) образуют ламеллярные (пластинчатые) или инверсные гексагональные (шестиугольные) структуры (рис. 7.16). [c.307]

    Если этот процесс обеспечивает лущение в фазе гексана, то другой экспериментальный метод, разрабатываемый исследователями Южного регионального научно-исследовательского центра министерства сельского хозяйства США, предусматривает во время обезжиривания разделение белков на две фракции с высоким и низким содержанием белков. Этот метод технологии, названный жидкостно-циклонным процессом, объединяет экстрагирование масла с удалением других соединений и позволяет получать освобожденную от токсичных примесей муку из семян с высоким содержанием липидов. Процедура обработки, применяемая в отнощении семян хлопчатника для удаления госсипола, схематически показана ниже [123]. [c.388]

    Длинноцепочечные кислоты, спирты или альдегиды, выделяемые из природных липидов, отличаются в основном длиной цепи и степенью ненасыщенности, однако смеси таких соединений могут содержать соединения с разветвленным углеродным скелетом, циклические остатки или дополнительные функциональные группы. После перевода в соответствующие производные такие смеси количественно анализируют методом газовой хроматографии. В случае очень сложных смесей или если требуется более тонкий анализ, газожидкостную хроматографию проводят на нескольких фазах или в сочетании с другими методам разделения, например с хроматографией в присутствии ионов серебра или распределительной хроматографией. [c.80]


    Туна, Камерек и Мангольд [62], применив индикаторный анализ, показали, что фракции природных липидов, разделенные методом ХТС, не загрязняют друг друга. Небольшие количества горячего трипальмитина были смешаны с жиром печени акулы и затем разделены методом адсорбционной ХТС. Радиоавтограф хроматограммы показал, что вся ра иоактивность находится во фракции триглицеридов. Весьма близкие по структуре к триглицеридам алкоксидиглицериды не были ими загрязнены (см. рис. 72, стр. 152). [c.74]

    Газовую хроматографию (ГХ) можно использовать для количественного определения липидов, разделенных методов ТСХ. Виоке и Холман [138] анализировали методом ГХ эфиры жирных кислот после хроматографирования их на силикагеле G с различными смесями диэтилового эфира и гексана. Зоны затем элюировали диэтиловым эфиром, объем полученного раствора доводили до определенной величины, отбирали аликвотную часть его и вводили в газовый хроматограф. Бойер и др. [182, 183] таким же методом определяли липиды крови, но сначала эти авторы экстрагировали примерно 5 мг липидов из крови и наносили пробу на слой кремневой кислоты. После разделения пятна обрабатывали 10 %-ной серной кислотой (масса/ /объем) и этерифицировали, добавляя безводный метанол и нагревая 1 ч при 80 °С (сфингомиэлин нагревали 16 ч). К смеси на этой стадии добавляли кристалл гидрохинона, выполняющий роль антиксиданта. После метилирования к пробе добавляли воду и экстрагировали сложные эфиры петролейным эфиром (40—60°С). Экстракт петролейного эфира сушили над смесью безводного сульфата и бикарбоната натрия (4 1), концентрировали и вводили в колонку газового хроматографа. Неподвижной фазой служил полиэфир янтарной кислоты и этиленгли-коля. При разделении указанным способом не следует применять для обнаружения иод, поскольку это приводит к частичной потере ненасыщенных кислот [184]. Аналогичным методом анализируют и стероиды [185, 186]. В этом случае трнметилсили-ловые эфиры можно получить при взаимодействии с гексаме-тилдисилазаном. Описанным способом в суточной пробе мочи определили 15 мкг тестостерона с точностью 7% [185]. [c.338]

    Для количественного определения липидов, разделенных методом ТСХ, были также использованы все известные методы измерения радиоактивности (см. т. 1, гл. XI, разд. 6). Казангидр. [288] разработали полуавтоматический скребок для снятия зон с адсорбционных слоев, а Снайдер и Кимбл [289], а также Фос-сльен и др. [290] — автоматические скребки для определения содержания радиоактивных липидов. Эти приспособления рассмотрены в т. 1, гл. V, разд. 5. Фоссльен [291] описал автоматический прибор для экстракции образцов и нанесения пятен при исследовании липидов. [c.101]

    Наиболее удачный метод количественного определения липидов, разделенных с помощью ТСХ, предложен Окумура с сотр. [3, 695, 696], которые использовали кварцевые стержни, на которые был нанесен силикагель. Такая система, имеющая в настоящее время коммерческое название ятроскан ТСХ/ПИД-си-стемы, сочетает метод ТСХ с автоматическим количественным определением, который основан на принципе пламенно-ионизационного детектирования, используемого в ГЖХ. [c.206]

    Полезный метод отделения следовых количеств веществ представляет перегонка с паром (кодистилляхщя). Этот метод, главным образом перегонка с водяным паром, используется, в частности, для разделения соединений на фуппы, например для отделения летучих веществ ог нелетучих (белков, жиров и т.п.) и выделения следовых количеств ХОП из природных вод. Предварительно следует выяснить, не разрушается ли определяемое вещество при температуре отгонки. В противном случае следует применять отгонку с паром при пониженном давлении. Отогнанные соединения обычно извлекают из конденсата жидкостной экстракцией. Иногда применяют перегонку с другими растворителями (метанол, циклогексанон и т.п.) (123 . В другом варианте добавляют растворитель, кипящий при сравнительна низкой температуре, но с которым совместно отгоняются определяемые компоненты, например дихлорметан. Этот прием даст хорошие результаты при отделении суперэкотоксикантов от веществ, содержащих природные липиды, которые хорошо растворяются в дихлорметанс(5  [c.230]

    Жидкостная Л. х. примен. для разделения в-в, способных образовывать комплексы,— аминов, карбоновых к-т, спиртов, серусодержащих соед. и др. Детектором в этом случае служит проточный спектрофотометр. Образование сорбционного комплекса — селективный процесс, поэтому Л. х. особенно эффективна при разделении изомеров, в т. ч. энантиомеров. Напр., на смолах с группами оптически активных и-аминокислот, координиров. с ионами Си +, разделяют энантиомеры аминокислот, оксикислот, аминоспиртов, диаминов. На карбоксильных и иминодиацетатных смолах с ионами Са- + илн NP+ разделяют и анализируют нуклеиновые основания и нуклеотиды. Методом газовой Л. х. на сорбентах, содержащих, напр., соли Ag+, разделяют олефины и аром, соединения. Тонкослойная Л х. примен. для разделения стероидов и липидов. [c.300]

    Идентификацию компонентов смеси проводят по величинам Rf. Количеств, определение в-в в зонах мож.но.осуществлять непосредственно на слое сорбента по площади хроматографич. зоны, интенсивности флуоресценции компонента или его соед. с подходящим реагентом, радиохим. методами. Использ. также автоматич. сканирующие приборы, измеряющие поглощение, пропускание, отражение света или радиоактивность хроматографич. зон. Разделенные зоны можно снять с пластин вместе со слоем, десорбировать компонент в р-ритель и анализировать р-р спектрофотометрически. С помощью ТСХ можно определить в-ва в кол-вах от Ю до 10 г ошибка определения не менее 5—10% число определяемых компонентов не более 20—30. ТСХ широко использ. для разделения и анализа как неорг.,,так и орг. в-в, в т. ч. синтетических полимеров, лек. ср-в, пестицидов, аминокислот, липидов, ПАВ, витаминов, стероидов. [c.584]

    Наиболее эффективным и широко применяемым методом фракционирования сложных смесей липидов является хроматография. Главную роль при аналитическом фракционировании играет адсорбционная хроматография в тонком слое сорбента. Этот метод также применяется в препаративных целях, когда разделению подвергается небольшое количество липидов (50—300 мг). Если масса липидов превышает 300 мг, используют колоночную хроматографию, хотя по разделяющей способности и времени разделения этот метод часто уступает тонкослойной и газовой хроматографии. Однократного хроматографирования обычно бывает недостаточно для выделения индивидуальных веществ, в связи с этим полученные фракции подвергают препаративной тонкослойной хроматографии или колоночной хроматографии другого типа. При колоночрюй хроматографии липидов используют не только принцип адсорбции, но и принцип распределения между двумя несмеши-вающимися жидкостями, гель-фильтрации, ионного обмена. [c.69]

    Пластинки для тонкослойной хроматографии липидов готовят, как указано на с. 72. При аналитической хроматографии толщина слоя силикагеля обычно не превышает 0,25 мм. Для препаративных целей используют слои толщиной 0,75—1,0 мм на пластинках размером 20X Х20 см В некоторых случаях для лучшего разделения используют удлиненные пластинки (34x20 см). Для аналитического разделения липидов можно применять готовые пластинки Силуфол чехословацкого производства. Они представляют собой тонкий слой силикагеля, закрепленный на алюминиевой фольге с помощью крахмала. Для подготовки пластинок Силуфол к работе их необходимо активировать. [c.70]

    Хроматографическое разделение липидов на колонке. 150 г силикагеля, обработанного, как указано на с. 69, суспендируют в 500 мл гексана и вносят в колонку (50X3,5 см), следя за тем, чтобы адсорбент при вытекании растворителя упаковывался равномерно в плотный слой без пузырьков воздуха. Для этого колонку слегка встряхивают постукиванием деревянной палочкой или резиновой трубкой, надетой на стеклянную палочку. Необходимо также следить за тем, чтобы верхний слой силикагеля постоянно находился под слоем растворителя. Колонку промывают 150 мл чистого растворителя, оставляют над поверхностью силикагеля слой жидкости в 1—2 мм и наносят на колонку раствор ли- [c.75]

    Растительные белки , которые будут рассмотрены в этой главе, имеют значительно более узкий рынок сбыта в весовом отношении, поскольку он измеряется десятками тысяч, а не сотнями миллионов тонн в общемировом масштабе. Эти продукты можно определить как ингредиенты, относительно богатые сырыми белками (обычно свыше 50 % к массе сухого вещества), получаемые из различных растений (в основном из масличных культур, но также из зерновых, люцерны и пр.) с помощью новых промышленных технологий и используемые в разнообразных формах в питании человека, ибо освобождены от возможных антипитательных компонентов, Таким образом, это определение не принимает в расчет всю массу шротов и жмыхов, широко используемых для кормления животных, а также совокупность пищевых продуктов, кулинарных изделий и блюд, традиционно изготовляемых и потребляемых в странах Дальнего Востока, таких, как тофу, шую, мизо и др. Данное определение подчеркивает также важность того факта, что эти технологические процессы проводятся в промышленном масштабе. В самом деле, применительно к двум другим важнейшим компонентам питания липидам и углеводам — индустриальные методы разделения и очистки давно [c.642]

    При этом остальные липорастворимые соединения не пропадут из поля зрения — они всплывут в других классах природных соединений, таких как изопреноиды и др. Таким образом, весь блок наших знаний о липидах мы разделим на два основных раздела жирные кислоты во всем их многообразии и производные жирных кислот, которые можно считать собственно липидами. Наиболее рациональная классификация липидов предполагает разделение их на три группы первая группа представлена метаболитами, образованными в результате реакций окисления вторая группа является глицеридами жирных кислот — это наиболее традиционные представители класса липидов, известные как жиры и жироподобные вещества третью группу составляют жироподобные соединения разного типа,отличные от глицеридов. Сразу же надо отметить, что в ряде случаев трудно провести однозначную границу между метаболитами первой группы и некоторыми жирными кислотами, также достаточно условно разделение между второй и третьей группами с чисто химических позиций. [c.103]

    В тех случаях, когда вместо глицерина в качестве спиртовой компоненты во взаимодействие с жирными кислотами выступают двухатомные спирты (диолы) — образуется группа диоль-ных липидов. Гликоли, участвующие в формировании соответствующих липидов, обычно имеют первичные спиртовые группы, разделенные несколькими метиленовыми звеньями (от 2 до 6), а их липидные производные, как и в случае глицерина, могут быть нейтральными или фосфатидными. Диольные [c.127]

    Применеиие. Ж х важнейший физ -хим метод исследования в химии, биологии, биохимии, медицине, биотехнологии Ее используют для анализа, разделения, очистки и выделения аминокислот, пептидов белков ферментов, вирусов, нуклеотидов, нуклеиновых к-т, углеводов, липидов, гормонов и т д, изучения процессов метаболизма в живых организмах лек препаратов, диагностики в медицине, анализа продуктов хим и нефтехим синтеза попупродуктов, красителей, топлив, смазок, нефтей, сточных вод, изучения изотерм сорбции из р-ра, кинетики и селективности хим [c.153]

    Подобно микоплазмам, клетки Е. oli окружены тонкой ( 8 нм) мембраной, в состав которой входят белки ( 50%) и липиды ( 50%) -Под электронным микроскопом окрашенная (например, перманганатом) мембрана имеет внд двух тончайших ( 2,0 нм) темных линий, разделенных неокрашиваемым слоем ( 3,5 нм) (рис. 1-2,6). Мембраны примерно такой толщины и таким же образом прокрашивающиеся имеются во всех клетках, как у бактерий, так и у эукариот. [c.21]

    Эти технологические процессы в целом мало различаются между собой их особенности заключаются в способах разделения твердых и жидких компонентов и в промежуточной стадии сушки (позволяющей получать жировой концентрат) перед извлечением из него липидов классическим растворителем. Эти процессы оправданы из-за наличия глюкозинолатов в семенах и ядрах семян рапса даже у новых сортов с пониженным содержанием этих компонентов. Указанные соединения под действием фермента, имеющегося в семенах, — мирозиназы, гидролизуются, образуя токсические вещества (изотиоцианаты, венилтиоксазоли-дин, нитрилы и др.). [c.400]

    В настоящее время технологические процессы переработки необезжиренных видов сырья, богатых маслом, щироко не применяются ввиду того, что в промышленном производстве такое сырье используется для легкого извлечения масла из семян, а также из-за способности липидов связываться с белками. Это последнее обстоятельство представляет неудобство, поскольку значительно затрудняется сохранение изолята. Кроме того, функциональные свойства белков из-за присутствия этого масла могут ухудшаться. Однако некоторые авторы считают, что указанные неудобства (независимо от трудностей разделения эмульсий) могут быть несущественными по сравнению с термическим денатурированием, которое происходит во время предваритель- [c.454]

    В зависимости от применения или отсутствия разделения центрифугированием липидных фаз исходной суспензии можно приготовить разные по содержанию липидов изоляты. В вышесле-дующей схеме показан процесс выработки изолятов с различным содержанием липидов путем экстрагирования водой и ультрафильтрации. [c.458]

    Этот попутный продукт высушивают на разогретом вальце или другим менее денатурирующим способом его можно использовать для кормления животных или в питании человека. Как сообщалось [124], проведено разделение белкового экстракта и нерастворимого осадка (при pH 8,5) с помощью вибрирующих сит с размером отверстий 75 мкм (удаляющих волокна), а затем батареи гидроциклонов (удаление крахмала) с промывкой в противотоке. В итоге попутный продукт — крахмал содержит лишь 0,4 % белков, а выход азотистых веществ изолята достигает 77 % (после осаждения при pH 4,4). Каков бы ни был применяемый метод разделения, основным препятствием при осуществлении этого технологического процесса с богатыми крахмалом семенами бобовых культур является наличие липидов в изолятах. Действительно, если мука из шелушеных семян конских бобов и гороха содержит только 1,5—2 % липидов, они по большей части связаны с белками, а в изолятах их от 3 до 8 % это может вызвать затруднения в смысле обеспечения их сохранности и в конечном счете нарушить проявление функциональных свойств белков. [c.462]

    Полученным таким способом волокнам можно придать разную организацию, например, расположить их параллельными пучками, чтобы имитировать волокнистую структуру мышечной ткани. Однако необходимо соединить волокна между собой для получения продуктов с приемлемой текстурой. Когезии можно добиться термообработкой сырых волокон под давлением [32 , но чаще всего она достигается введением связующего вещества. Нередко для этого служит овальбумин, поскольку он коагулирует под действием тепла, но в состав связующих веществ могут входить и другие белки, такие, как желатин, казеин, белки сыворотки молока, клейковина, белки сои. Используются также крахмал и полисахариды типа альгината и каррагинана благодаря их загущающим и желирующим свойствам. Связующие вещества, помимо их склеивающей, когезионной роли, могут служить основой для введения пигментов, ароматизирующих добавок и липидов. Пропитку волокон можно проводить в ванне с раствором, содержащим связующее вещество. Закрепление связующего вещества происходит затем под действием прогрева, а более равномерное распределение в массе можно улучшить разделением волокон вибрацией [29] или заставив их циркулировать в противотоке связующего вещества в извилистом контуре [71]. Некоторые авторы [64] предложили технологический процесс, в котором связующее вещество не распределяется равномерно, [c.536]

    При исследовании образца липида можно определить (качественно (i количественно) природу жирных кислот (или спиртов, или альдегидов), содерл-сащихся во всем исследуемом образце или в его отдельных фракциях. Кроме того, с помощью с )ерментов мол-сно определить жирные кислоты, содержащиеся в кал-сдом положении триглицерида или фосфоглицерида, и, наконец, путем сочетания хроматографического разделения с ферментативным деаци-лированием иногда можно идентифицировать индивидуальные соединения. [c.79]


Смотреть страницы где упоминается термин Липиды разделение: [c.628]    [c.628]    [c.597]    [c.159]    [c.309]    [c.552]    [c.127]    [c.51]    [c.535]    [c.80]   
Лабораторное руководство по хроматографическим и смежным методам Часть 2 (1982) -- [ c.88 , c.161 , c.169 ]

Хроматография Практическое приложение метода Часть 1 (1986) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Липид-белковые взаимодействия приводят к разделению фаз и асимметрии мембраны

Липиды

Липиды методы разделения и идентификации

Новые методы разделения липидов

Разделение глицериновых эфиров и других нейтральных липидов

Разделение липидов в соответствии со степенью ненасыщенности

Разделение липидов мозга методом тонкослойной хроматографии

Разделение липидов на классы

Разделение липидов на колонке с силикагелем

Разделение липидов на отдельные классы соединений

Разделение липидов на составляющие компоненты и определение группового состава фосфатидов методом тонкослойной хроматографии

Разделение липидов на фракции

Разделение липидов различных классов

Разделение полярных и неполярных липидов

Разделение смесей липидов на индивидуальные соединения

Разделение фосфолипидов и других полярных липидов

Фазовое разделение липидов



© 2025 chem21.info Реклама на сайте