Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки анаболизм

    Стабильность белкового состава организма — следствие устойчивого динамического равновесия, при котором количество постоянно распадающихся белков практически равно синтезируемому их количеству. Поддержание этого равновесия между анаболизмом и катаболизмом — явление тонкое, так как организм располагает лишь очень малым резервом аминокислот. В организме человека соотношение свободных аминокислот и возобновимых белков составляет приблизительно 1 5000 [65]. [c.568]


    Живая природа характеризуется рядом свойств, отличающих ее от неживой природы, и почти все эти свойства связаны с белками. Прежде всего для живых организмов характерны широкое разнообразие белковых структур и их высокая упорядоченность последняя существует во времени и пространстве. Удивительная способность живых организмов к воспроизведению себе подобных также связана с белками. Сократимость, движение — непременные атрибуты живых систем —имеют прямое отношение к белковым структурам мышечного аппарата. Наконец, жизнь немыслима без обмена веществ, постоянного обновления составных частей живого организма, т.е. без процессов анаболизма и катаболизма (этого удивительного единства противоположностей живого), в основе которых лежит деятельность каталитически активных белков—ферментов. [c.19]

    Как было указано, обмен веществ в организме человека протекает не хаотично он интегрирован и тонко настроен. Все превращения органических веществ, процессы анаболизма и катаболизма тесно связаны друг с другом. В частности, процессы синтеза и распада взаимосвязаны, координированы и регулируются нейрогормональными механизмами, придающими химическим процессам нужное направление. В организме человека, как и в живой природе вообще, не существует самостоятельного обмена белков, жиров, углеводов и нуклеиновых кислот. Все превращения объединены в целостный процесс метаболизма, подчиняющийся диалектическим закономерностям взаимозависимости и взаимообусловленности, допускающий также взаимопревращения между отдельными классами органических веществ. Подобные взаимопревращения диктуются физиологическими потребностями организма, а также целесообразностью замены одних классов органических веществ другими в условиях блокирования какого-либо процесса при патологии. [c.545]

    В организме синтез и распад белков тесно взаимосвязаны. Постоянство массы и белкового состава взрослого организма является результатом тонко настроенного равновесия между анаболизмом и катаболизмом. Аминокислоты белков пищи и аминокислоты, возникающие в результате распада белков тканей в процессе самообновления, составляют общий фонд аминокислот организма, равный приблизительно 500 г. [c.167]

    Основная часть аминокислот используется в процессах биосинтеза белка и других азотсодержащих веществ. Те аминокислоты, которые не были использованы в реакциях анаболизма (около 100 г в сутки), распадаются в организме до конечных продуктов. Примерно такое же количество аминокислот должно попадать ежедневно в организм с пищей для сохранения азотистого равновесия. [c.167]

    АНАБОЛИЗМ м. Ферментативный синтез биополимеров из простых предшественников (напр., белков, аминокислот и т.п.). [c.28]

    Анаболизм, или биосинтез, начинающийся с малых молекул-предшественников, протекает также в три стадии. Синтез белков, например, начинается с образования а-кетокислот и других пред- [c.382]


    Метаболизм включает в себя катаболизм, или расщепление пищевых веществ, богатых энергией, и анаболизм, или биосинтез новых клеточных компонентов. В катаболических и анаболических процессах различают три главные стадии. На первой стадии катаболизма полисахариды, жиры и белки расщеп- [c.398]

    Поддерживает концентрацию Са и 1 п крови Стимулирует рост, регулирует анаболизм белков Стимулирует парасимпатическую нервную систему Стимулирует дыхание [c.498]

    ОБМЕН ВЕЩЕСТВ. Совокупность биохимических реакций, лежащих в основе жизнедеятельности организмов. Биологический обмен веществ представляет собой процессы превращения веществ внешней среды в вещества живого организма и обратные превращения веществ организма в вещества внешней среды. С другой стороны, это процессы, происходящие внутри организма, в отдельных частях, органах и тканях, и, наконец, процессы превращения веществ в клетке и в отдельных клеточных структурах. Без непрерывного взаимодействия организма с внешней средой, без обмена веществ не может быть жизни. Обмен веществ неразрывно связан с обменом энергии. Важнейшую сторону обмена веществ составляют биохимические процессы, и выяснение химизма отдельных звеньев обмена веществ является одним из путей познания жизни. Благодаря крупным успехам биохимии к настоящему времени в основном раскрыт химизм таких кардинальных звеньев обмена веществ, как дыхание и брожение, фотосинтез, обмен азотистых соединений, жиров, углеводов и органических кислот и многие другие процессы. Выяснено также влияние многих внешних и внутренних факторов на интенсивность и направленность отдельных звеньев обмена веществ, что позволяет путем изменения внешних условий изменять обмен веществ микроорганизмов, растений и животных в желаемом для человека направлении. Процессы обмена веществ делятся на две группы — катаболизм и анаболизм. Катаболизм — это процессы, при которых происходит распад, расщепление сложных органических соединений до белее простых (например, распад белков до аминокислот, крахмала до глюкозы, сахаров до углекислоты и воды т. д.). Анаболизм — это синтетические процессы, при которых образуются более сложные соединения из более простых. При катаболизме происходит выделение энергии, а при анаболизме ее поглощение. Всякое усиление синтетических процессов в организме неизбежно сопровождается усилением процессов распада веществ. [c.204]

    На этой схеме основные питательные вещества для высокоорганизованных живых организмов представлены углеводами, липидами и белками они превращаются через многие другие более простые соединения в углекислый газ, воду и соединения азота. Эти превращения осуществляются посредством реакций, катализируемых ферментами. Основная роль ферментов — катализ реакций обмена, за счет которых осуществляется сохранение, рост и репродукция живых организмов. Обмен (метаболизм) включает два точно сбалансированных процесса, а именно анаболизм, или использование энергии и материалов для химических синтезов, и катаболизм, или расщепление субстратов с освобождением энергии. Каждая ступень в сложной [c.112]

    Анаболизм — ферментативный синтез сравнительно крупных клеточных компонентов (полисахаридов, нуклеиновых кислот, белков, жиров) из простых предшественников, который ведет к увеличению размеров молекул, к усложнению их структуры. Последовательность ферментативных реакций, приводящих к биосинтезу тех или иных клеточных компонентов, называют анаболическими путями. [c.96]

    Процесс анаболизма, как и катаболизма, включает три стадии. Исходными веществами для него служат соединения, поставляемые третьей стадией катаболизма, т. е. третья стадия катаболизма — первая, исходная, стадия анаболизма. Так, например, синтез белка начинается с а-кетокислот, являющихся предшественниками а-аминокислот. На второй стадии анаболизма а-кетокислоты аминируются аминогруппой доноров с образованием а-аминокислот, а на третьей, заключительной, стадии аминокислоты объединяются в пептидные цепи. [c.96]

    В целом все химические процессы, происходящие при построении и деятельности тканей живого организма, называются метаболизмом или обменом веществ. Анаболизм — это процесс синтеза сложных молекул из простых, например образование белков клеток из аминокислот крови  [c.325]

    Анаболизм тоже состоит из трех стадий, причем соединения, образовавшиеся на третьей стадии катаболизма, являются исходными веществами в процессе анаболизма. Например, биосинтез белков начинается с а-кетокислот, получающихся на третьей стадии катаболизма на второй стадии а-кетокислоты превращаются в а-аминокислоты на третьей стадии анаболизма из а-аминокислот создаются пептидные цепи. Пути катаболизма и анаболизма в большинстве случаев неидентичны. [c.393]

    Белковый обмен характеризуется катаболизмом и анаболизмом. В процессе катаболизма бактерии разлагают белки под действием протеаз с образованием пептидов. Под действием пептидаз из пептидов образуются аминокислоты. [c.17]

    В случае преобладания анаболизма над катаболизмом происходит накопление химических веществ в организме, в первую очередь белков. Накопление белков в организме - обязательное условие его роста и развития. [c.21]


    Последовательное рассмотрение анаболических и катаболических путей белков и аминокислот целесообразно начать с первичного пути анаболизма данных соединений — процесса фиксации атмосферного азота. [c.361]

    Вещества, оказывающие репрессирующее влияние на синтез белков, как правило, образуются в той же клетке. Такие вещества накапливаются в результате реакции анаболизма. Повышение их концентрации до определенного уровня приводит, к подавлению синтеза своих ферментов, что дает клетке возможность синтезировать другие белки или экономить метаболические ресурсы. Если возникает дефицит данного вещества, то вновь идет синтез этих ферментов. Ферменты, находящиеся под репрессорным контролем, — в основном ферменты анаболизма. [c.59]

    Потоки питательных веществ и энергии могут изменяться в одних случаях резко превышать потребности клетки, а в других — не удовлетворять их В соответствии с этим изменяется и соотношение скоростей катаболизма и анаболизма. В определенных случаях может происходить потребление собственных полимеров, менее важных для выживания (например, липидов и полисахаридов), для построения жизненно валяных полимеров, таких, как белки и нуклеиновые кислоты. [c.240]

    С помощью методов радиоавтографии [6, 17] или иммуно-цитохимии [26, 27, 11, 67] удалось определить места на шероховатой эндоплазматической сети (ШЭС), где происходит синтез запасных белков семян. Белки, синтезированные на полирибосомах, связанных с ШЕС, сразу проходят через мембрану сети благодаря наличию на N-конце полипептидов с гидрофобными свойствами короткой последовательности, называемой сигнальной [15, 45]. Существование такой последовательности в настоящее время установлено у бобовых и злаковых [18, 23, 32]. При появлении (в просвете эндоплазматической сети) этой последовательности она отделяется от новосинтезированной цепи специфической пептидазой. В процессе прохождения через мембраны шероховатой эндоплазматической сети некоторые белки могут также становиться гликоксилированными [62, 5, 65]. Таким образом, механизм анаболизма запасных белков очень сходен с механизмами, описанными для секреторных клеток животных [70] и растений [46]. [c.135]

    Промежуточный метаболизм складывается из двух фаз-катаболизма и анаболизма. Катаболизм-это фаза, в которой происходит расщепление сложных органических молекул до более простых конечных продуктов. Углеводы, жиры и белки, поступившие извне с пищей или присутствующие в самой клетке в качестве запасных веществ, распадаются в серии последовательных реакций до таких соединений, как молочная кислота, СО 2 и аммиак. Катаболические процессы сопровождаются высвобождением свободной энергии, заключенной в сложной структуре больших органических молекул. На определенных этапах соответствующих катаболических путей значительная часть свободной энергии запасается благодаря сопряженным ферментативным реакциям в форме высокоэнергетического соединения - аденозинтрифосфата (АТР). Часть ее запасается также в богатых энергией водородных атомах кофермента никотинамид адениндинуклеотидфосфата, находящегося в [c.379]

    Анаболизм, называемый также биосинтезом,-это та фаза метаболизма, в которой из малых молекул-предшественников, или строительных блоков , синтезируются белки, нуклеиновые кислоты и другие макромолекулярные компоненты клеток. Поскольку биосинтез-это процесс, в результате которого увеличиваются размеры молекул и усложняется их структура, он требует затраты свободной энергии. Источником этой энергии служит распад АТР до ADP и неорганического фосфата. Для биосинтеза некоторых клеточных компонентов требуются также богатые энергией водородные атомы, донором которых является NADPH (рис. 13-5). Катаболические и анаболические реакции протекают в клетках одновременно, однако их скорости регулируются независимо. [c.380]

    Превращения веществ в клетке (обмен веществ, или метаболизм), в результате которых из сравнительно простых предшественников, например глюкозы, жирных кислот с длинной цепью или ароматических соединений, образуется новое клеточное вещество, можно ради простоты подразделить на три основные группы. Сначала питательные вещества расщепляются на небольшие фрагменты (распад, или катаболизм), а затем в ходе реакций промежуточного обмена, или амфиболизма, они превращаются в ряд органических кислот и фосфорных эфиров. Эти два пути переходят незаметно один в другой. Многообразные низкомолекулярные соединения-это тот субстрат, из которого синтезируются основные строительные блоки клетки. Строительными блоками мы называем аминокислоты, пуриновые и пиримидиновые основания, фос-форилированные сахара, органические кислоты и другие метаболиты — конечные продукты цепей биосинтеза, иногда длинных. Из них строятся полимерные макромолекулы (нуклеиновые кислоты, белки, резервные вещества, компоненты клеточной стенки и т.п.), из которых состоит клетка. Эти два этапа биосинтеза клеточных веществ-синтез строительных блоков и синтез полимеров-составляют синтетическую ветвь метаболизма, или анаболизм (рис. 7.1). [c.214]

    Образование ферментов, участвующих в процессах анаболизма, например в биосинтезе пиримидинов, пуринов и 20 аминокислот, регулируется путем репрессии. В большинстве случаев сигнал к остановке биосинтеза белков исходит от конечных продуктов этого процесса (репрессия конечным продуктом). Если в среде имеются одновременно два субстрата, то бактерия обычно предпочитает тот субстрат, который обеспечивает более быстрый рост. Синтез ферментов, расще-пляюпщх второй субстрат, репрессируется в этом случае говорят о катаболитной репрессии. [c.474]

    Очевидно, что обновление белков отражает совокупность процессов синтеза и распада до сих пор исследования процессов обновления не дали однозначного ответа на вопрос о том, могут ли аминокислоты включаться в белки при отсутствии реального синтеза de novo. Эти исследования мало чем обогатили наши познания о механизме процессов анаболизма и катаболизма белков. [c.275]

    Репрессия под действием конечных продуктов характерна для процессов биосинтеза (анаболизма) аминокислот, витаминов, пуринов и пиримидинов индукция же, как правило, имеет место при распаде (катаболизме) источников углерода и энергии Совершенно очевидно, что регуляция необходима для обеспечения экономичности работы белоксинтезирующей системы. Синтез ферментов любого метаболического пути включается или выключается в зависимости от того, сколь велика в данный момент потребность клетки в этом пути. Зачем синтезировать белки, если они не нужны Особенно ярким примером того, как с помощью индукции и репрессии обеспечивается строгий контроль над синтезом определенной группы белков, может служить регуляция образования ферментов, катализирующих распад миндальной кислоты (точнее ее солей — манделатов) у Pseudomonas. Ниже приведена предполагаемая последовательность реакций распада. [c.536]

    По химическому строению и биологическому действию метандростенолон близок к тестостерону н его аналогам. Тестостерон наряду с выраженным андрогенным действием обладает также анаболическими свойствами и может рассматриваться как эндогенный анаболический гормон. Недостаточное содержание тестостерона в организме (при недостаточном половом развитии, после кастрации и др.) обычно сопровождается нарушением белкового анаболизма, атрофией скелетной мускулатуры и усилением отложения в подкожной клетчатке и внутренних органах жировой ткани. Заместительное применение препаратов тестостерона может оказать при этих изменениях терапевтический эффект. Анаболическое действие тестостерона проявляется также при различных патологических состояниях, сопровождающихся усиленным распадом белков (хроническиеиифекционные заболевания, истощение, хирургические вмешательства, тяжелые травмы и т. п.) и нарушением обмена кальция и фосфора (остеопороз). [c.119]

    Основными показаниями к применению метандростенолона являются нарушения белкового анаболизма при астении, кахексии различного происхождения, у реконвалесцентов после тяжелых травм, операций инфекционные и другие заболевания, сопровождающиеся потерей белка повышенная потеря организмом белков после лучевой терапии отрицательный азотистый баланс при длительном применении гормонов коры надпочечника (кортизон и др.). В педиатрической практике препарат показан при задержке роста у детей, анорексии, упадке питания и т. д. [c.120]

    В обмене белков участвуют чрезвычайно сложные молекулы их сложность заключается не только в том, что они построены приблизительно из двадцати разных аминокислот, но также и в том, что содержание этих аминокислот, а также последовательность их расположения в молекулах различны. Это приводит к образованию самых разнообразных белков. Все тканевые белки животных, принадлежащих к разным видам, а также белки разных органов и желез имеют специфическое строение и состав. Белки иного типа — это белки ферментов и гормонов, плазменные белки, белок гемоглобина, а также белки различных нуклеонротеидов. Проблема анаболизма, т. е. синтеза белков, необходимых для роста и развития организма, еще далека от разрешения. Процесс катаболизма, или расщепления белков, при котором осво- [c.378]

    Изучение молекулярных процессов, лежаш их в основе переноса наследственной информации, сопряжено со многими методологическими проблемами, которые обусловлены особенностями биосинтеза нуклеиновых кислот, протекающего только на готовой матрице матричный биосинтез). Кроме того, учитывая огромное биологическое значение процессов, протекающих с участием нуклеиновых кислот, многие авторы предпочитают рассматривать их в отдельных разделах курса биохимии. В рамках настоящего пособия процессы переноса генетической информации в живых организмах рассматриваются, исходя из следующих соображений. Прежде всего учитывается, что биосинтезы нуклеиновых кислот представляют собой анаболические процессы, которые целесообразно рассматривать наряду с процессами анаболизма и катаболизма биосоединений данного и других классов. Кроме того, в настоящей главе обсуждается метаболизм нуклеотидов как строительных блоков нуклеиновых кислот. Таким образом, исследование путей биосинтеза нуклеиновых кислот, начиная с нуклеотидов и заканчивая полинуклеотидными цепями, включая их трансформацию, позволяет уяснить взаимосвязь между разными биомолекулами, что, по сути, составляет материальную основу биологической эволюции. Информация, касающаяся общих вопросов биоэнергетики и метаболизма, необходимая для усвоения материала по метаболизму нуклеиновых кислот, дана в предыдущей главе. В следующей главе Обмен белков и аминокислот изложен биосинтез белков трансляция), который протекает на матрице РНК и отражает биологический принцип передачи наследственной информации по цепочке ДНК РНК белок. [c.343]

    Кажущееся постоянство химического состава живого организма поддерживается за счет равновесия между процессами синтеза и разрушения составляющих его компонентов, т. е. равновесия между катаболизмом и анаболизмом. В растущем организме такое равновесие смещено в сторону синтеза белков, т. е. анаболическая функция преобладает над катабо-лической. В организме взрослого человека в результате биосинтеза ежесуточно обновляется до 400 г белка. Разные белки обновляются с различной скоростью — от нескольких минут до 10 и более суток, атакой белок, как коллаген, практически не обновляется за все время жизни организма. В целом период полураспада всех белков в организме человека составляет около 80 сут. Из них необратимо распадается примерно четвертая часть протеиногенных аминокислот (около 100 г), которая должна возобнов- [c.360]

    Как отмечалось в главе 1, сложные белки состоят из белков и простетических групп, имеющих различную химическую природу. Метаболические пути простетических групп глико-, липо- и нуклеопротеинов те же, что и для углеводов, липидов и нуклеиновых кислот (см. главы 11—14). В отличие от перечисленных соединений метаболические пути для простетических групп хромопротеинов, особенно гемопротеинов, имеют характерные особенности. Рассмотрим анаболизм и катаболизм простетических групп хромопротеинов на примере гема, обусловливающего биологическую активность многих представителей порфиринсодержащих белков (см. главу 5). [c.389]

    Эстрогены способствуют установлению положительного баланса кальция, особенно у птиц, и вызывают размягчение лобковых костей у мышей. В то время как у человека эстрогены имеют тенденцию понижать уровень холестерина в крови, у птиц они вызывают липемию и гиперхолестеринемию. Действие эстрогенов на метаболизм липидов наряду с усилением под их влиянием анаболизма белка и повышением эффективности усвоения пищи делают экономически выгодным применение этих гормонов в птицеводстве и животноводстве. У кошек, собак и обезьян эстрогены вызывают реакции, характерные для спаривания, и рецептивность самок, тогда как у морских свинок для получения такого же эффекта необходима одновременная дача прогестерона. Как у мужчин, так [c.136]

    В этом свете надо рассматривать и исключения. Понятно, что у таких примитивных организмов, как бактерии, динамические состояния, связанные с анаболизмом и катаболизмом, развиты довольно плохо, а активный транспорт хорощо выражен. Главное для бактерий —питание и размножение, а не выживание отдельной особи. Для млекопитающего было бы бессмысленным расточительством поддерживать гемоглобин или казеин (белки, расходуемые или выводимые из тела) в динамическом состоянии. В случае ДНК динамическое состояние было бы даже опасным ведь задача ДНК как раз и состоит в том, чтобы оставаться в безопасности и неизменности, а не подвергаться риску. Но в целом динамические состояния оказались полезными. Мы не знаем организма, который бы обходился без них, и вместе с тем динамические состояния никогда не наблюдались нигде, кроме живой клетки. Сложные механизмы, необходимые для их поддержания и требующие тонкого контроля, могли развиться в эволюции только постепенно, за долгое время, в результате проб и ошибок. Эволюция транспорта Через мембраны рассматривается в работе Тостесона [1866]. [c.23]

    Как н()авило, но типу индукции регулируется синтез белков, припимаюншх участие в процессах катаболизма, а по тину репрессии - белков, участвующих в процессах анаболизма. [c.32]

    Гормоны контролируют синтез не только различных ферментов, участвующих в процессах анаболизма и катаболизма клетки, но и протеинкиназ, фосфопротеинфосфатаз, рецепторов-каналоформеров, регуляторных белков и ферментов, участвующих в функционировании систем передачи информации в клетке с участием вторичных посредников. Это один из путей интеграции и взаимовлияния отдельных механизмов нейрогуморальной регуляции функций клеток в составе целостного организма, [c.100]


Смотреть страницы где упоминается термин Белки анаболизм: [c.614]    [c.45]    [c.247]    [c.261]    [c.261]    [c.269]    [c.45]    [c.247]    [c.20]    [c.383]    [c.383]    [c.29]   
Химический энциклопедический словарь (1983) -- [ c.45 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.45 ]




ПОИСК





Смотрите так же термины и статьи:

Анаболизм



© 2025 chem21.info Реклама на сайте