Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки животные

    Одно из характерных нарушений азотистого обмена—белковая недостаточность, являющаяся следствием не только дефицита белка, но и ряда тяжелых заболеваний даже при достаточном поступлении белка с пищей. Белковая недостаточность у человека развивается как при полном и частичном голодании, так и при приеме однообразного белкового питания, когда в диете преобладают белки растительного происхождения, биологическая ценность которых значительно ниже ценности белков животного происхождения. Результатом этих состояний являются развитие отрицательного азотистого баланса, гипопротеинемии (снижение концентрации белков в сыворотке крови до 50—30 г/л в норме 65—85 г/л) и нарушения колловдно-осмотического и водно-солевого обмена (развитие отеков). При тяжелых формах пищевых дистрофий, например при заболе- [c.465]


    Незаменимые аминокислоты [13 — 16]. Растения и некоторые микроорганизмы могут производить все аминокислоты, нужные им для синтеза клеточных белков. Животные организмы способны синтезировать только 10 протеиногенных аминокислот. Остальные 10 ие могут быть получены с помощью биосинтеза и должны постоянно поступать в организм в виде пищевых белков. Отсутствие их в организме ведет к угрожающим жизни явлениям (задержка роста, отрицательный азотный баланс, расстройство биосинтеза белков и т. д.). Розе и сотр. [17] предложили для этих аминокислот название незаменимые аминокислоты (НАК). В табл. 1-2 приведены незаменимые для организма человека аминокислоты и минимальная суточная потребность в них. [c.18]

    В связи с изложенным ученые многих стран проводят работы по изысканию новых источников белка, которые позволили бы получить за короткий срок дешевый, биологически ценный продукт, не отличающийся по своим свойствам от белков животного происхождения и пригодный для использования в рационе питания человека и животных. Благодаря интенсивным разработкам и поискам ученых появилась возможность вырабатывать белки из нефтяного и газового сырья с помощью одноклеточных микроорганизмов - дрожжей, бактерий и водорослей. [c.262]

    Механическая прочность мясных изделий обусловлена опре. деленной жесткостью третичной структуры белков. Наибольшей жесткостью обладают белки соединительных тканей (коллаген и эластин). Одним из основных, но не единственным фактором обусловливающим жесткость третичной структуры большинства белков животного происхождения за исключением яиц и икры является присутствие в них воды (в форме прочносвязанной гидратной и др., которые здесь не рассматриваются). В мясных продуктах вода в третичной структуре белка связана главным образом с мышечными белками, а не с соединительнотканными. Содержание соединительнотканных белков зависит от характера сырья, возраста животного и ряда других условий. В среднем, меньше всего их в рыбе ( —4 %), затем в молодых птицах и свинине (до 8 %), больше всего (8— 5 %) в убойном мясе говядины и баранины. Тепловая обработка животных продуктов и заключается в частичном разрушении соединительнотканных, а также мышечных белков. Разрушение происходит за счет воды, участвующей в образовании третичной структуры мышечных белков (практически вода в мясе связана главным образом с этими белками) и освобождающейся при их температурной коагуляции. При тепловой обработке высвобожденная вода внедряется непосредственно во вторичную структуру белков (главным образом коллагена), разрушая их и приводя соединительнотканные белки в желатинообразное состояние. Эту фазу часто рассматривают как образование из коллагена глютина. Механическая прочность мясных продуктов при этом заметно уменьшается. Температурная коагуляция белков в зависимости и от их природы начинается с 60 °, но в большинстве случаев с 70 С. При варке и жарке мяса температура внутри изделия в зависимости от вида мяса и величины куска обычно достигает 75—95 С. [c.184]


    Структурообразующие белки тела человека называют фибриллярными белками (или волокнистыми, они имеют вытянутую, нитеобразную форму). Важнейшие фибриллярные белки животных — это кератин и коллаген белок кератин входит в состав волос, ногтей, мышц, рогов, игл и перьев коллаген — структурный компонент сухожилий, кожи, костей, соединительной ткани. При кипячении коллаген гидролизуется и образует растворимый в воде белок, называемый желатиной. В теле человека имеются растворимые белки, именуемые глобулярными белками. Альбумины, такие, как сывороточный альбумин, получаемый из крови животных, овальбумин яичного белка, лактальбумин молока, растворяются в холодной воде и слабом растворе соли. Глобулины, например глобулины плазмы крови, фибриноген, глобулин яичного белка, глобулин молока, растворяются в разбавленных растворах солей, но не в холодной воде. [c.384]

    ПЕПТИДЫ (полипептиды) — сложные органические вещества, состоящие из двух или более остатков аминокислот, соединенных амидными (пептидными) связями —СО—N1 — (см. Пептидная связь). П.— промежуточные продукты разлом. ения белка животных и растительных организмов. Под действием ферментов (пептидаз) пептидная связь в пептидах разрывается и образуются свободные аминокислоты. [c.188]

    Какие три типа пищевых продуктов необходимы для питания человека Сахар, крахмал и жир -> 42 Растительные масла, животные жиры и углеводы 39 Белки, углеводы и жиры 3 Растительные белки, животные белки и углеводы 40  [c.315]

    Для человека главные источники незаменимых аминокислот — белки животного и растительного происхождения, входящие в состав пищи, а для животных — в основном растительные белки. Все незаменимые аминокислоты должны содержаться в белках [c.8]

    В зависимости от механизма действия различают ферменты с относительной (или групповой) и абсолютной специфичностью. Так, для действия некоторых гидролитических ферментов наибольщее значение имеет тип химической связи в молекуле субстрата. Например, пепсин в одинаковой степени расщепляет белки животного и растительного происхождения, несмотря на то что эти белки существенно отличаются друг от друга как по химическому строению и аминокислотному составу, так и по физико-химическим свойствам. Однако пепсин не расщепляет ни углеводы, ни жиры. Объясняется это тем, что точкой приложения, местом действия пепсина является пептидная —СО—КН-связь. Для действия липазы, катализирующей гидролиз жиров на глицерин и жирные кислоты, подобным местом является сложноэфирная связь. Аналогичной групповой специфичностью обладают трипсин, химотрипсин, пептидазы, ферменты, гидролизующие а-гликозидные связи (но не 3-гликозидные связи, имеющиеся в целлюлозе) в полисахаридах, и др. Обычно эти ферменты участвуют в процессе пищеварения, и их групповая специфичность, вероятнее всего, имеет определенный биологический смысл. Относительной специфичностью наделены также некоторые внутриклеточные ферменты, например гексокиназа, катализирующая в присутствии АТФ фосфорилирование почти всех гексоз, хотя одновременно в клетках имеются и специфические для каждой гексозы ферменты, выполняющие такое же фосфорилирование (см. главу 10). [c.142]

    Коллагены — наиболее часто встречающиеся белки животных организмов (составляют 25 — 30%). Они входят в состав сухожилий, кожи, хрящей. [c.422]

    Протеолитический разрыв полипептидной цепи. Такие примеры гетерогенности белков довольно часты они в основном относятся ко многим белкам животного происхождения, но сейчас уже начинают отмечаться у растительных белков. [c.43]

    Низкая себестоимость растительных белковых веществ может снизить расходы на белковое питание людей однако их следует рассматривать не как заменители белков животного происхождения (суррогаты мяса), а как пищевые продукты с точно известными функциональными свойствами, употребление которых открывает новые возможности в кулинарии. Такой взгляд требует применения технологических процессов, гарантирующих хорошие питательные и органолептические качества, по которым эти азотсодержащие продукты приближаются к пище животного происхождения и служат ее дополнением. В частности, следовало бы, вероятно, отказаться от пропагандистских рекламных кампаний, таких, как проводимые в США по соевой муке, неблагоприятные вкусовые качества которой вследствие недостаточной обработки могут оттолкнуть некоторое число потенциальных потребителей, несмотря на благожелательное первоначальное отношение к этому продукту. [c.496]

    Совпадение определенных значений с результатами классического биологического теста при кормлении крыс зависит от конкретного белка. Оно достаточно полное для смесей растительных белков, но обычно определение химическими методами завышает питательную ценность бобовых культур и белков, подвергнутых термообработке, и преуменьшает питательность смесей, содержащих белки животного происхождения [69]. [c.577]


    Как следует из таблицы 12.1, растительные белки обычно меньще содержат незаменимых аминокислот, чем белки животного происхождения, и нередко характеризуются сильной несбалансированностью. [c.578]

    Интерес к соевым белкам с точки зрения питания человека обсуждали Янг и др. [73]. Эти авторы утверждают, что питательная ценность таких белков близка или равна питательной ценности белков животного происхождения, даже если они представляют преобладающую часть или единственный источник поедаемых белков при соблюдении подходящих условий обработки. Добавление метионина в пищу детей и взрослых даже нежелательно. Во всяком случае, необходимый уровень содер- жания метионина в рационе гораздо ниже того, который установлен в экспериментах на крысах. [c.581]

    При хорошей сбалансированности незаменимых аминокислот (табл. 12.9), за исключением серосодержащих, состав белков листьев характеризуется значительным постоянством и мало отличается от состава белков животного происхождения. Белки листьев особенно богаты лизином, триптофаном и треонином. Эти аминокислоты необходимо, как правило, извлекать механическим прессованием, так как они связаны с клетчаткой и углеводами клеточных стенок. Получаемый сок можно затем коагулировать различными способами, на пример введением пара. Перспективный прием сохранения качества белков — ультрафильтрация сока [49]. [c.586]

    Третий способ использования состоит в частичной замене белка животного происхождения растительными белками с расчетом на снижение себестоимости продукции в этом случае речь идет о разбавлении . [c.629]

    Основным компонентом альбуминовых клеев является белок альбумин [651. Склеивание при помощи альбумина основано на способности его при нагревании выше 63 °С свертываться, а при 75 °С затвердевать и терять растворимость в воде. Кроме белков животного происхождения находят применение и растительные белки. Клеи на основе белков растительного происхождения по свойствам и способам применения почти не отличаются от казеиновых. Из клеев растительного происхождения небелковой природы следует упомянуть крахмальные и декстриновые ]70, 74-76]. [c.256]

    Питательные свойства БРП обусловлены большим содержанием белков, которые находятся в них в наиболее концентрированном виде. Аминокислотный состав белков самых распространенных БРП, таких, как белковые продукты сои и конских бобов (два важнейших, если не единственных источника растительного белка, используемых во Франции в промышленном масштабе), делает их высокоценными продуктами питания. Ранее уже говорилось о том, что эти БРП, впрочем, как и большинство белков животного происхождения, характеризуются некоторым дефицитом метионина. Однако, как показали многочисленные исследования, проведенные в разных странах, если технология приготовления БРП подобрана правильно, замена части белков мяса этими БРП дает смесь белков, близкую по своей питательной ценности к натуральному мясу. [c.633]

    В самом деле, в развитых странах Запада мясо, рыба и молоко традиционно служат основными источниками пищевого белка. В этих, а также в развивающихся странах увеличение реальных доходов на душу населения в основном привело к росту потребления белков животного происхождения, которые всегда дороже растительных белков. В этих условиях производство, связанное с животноводством (выращивание и забой скота, снабжение полнорационными комбикормами), стало очень важной сферой хозяйственной деятельности, а мясо приобрело во многих случаях символическую ценность (сила, принадлежность к социальному классу и т.п.), которая значительно превосходит его реальную ценность как продукта питания. [c.643]

    Существует промышленность новых белков. В разных странах имеются крупные производственные мощности. Эти заводы способны поставлять очень разнообразную продукцию с весьма высокими питательными и органолептическими качествами и очень конкурентоспособными ценами по отношению к соответствующим белкам животного происхождения. Действующие в настоящее время производственные установки в состоянии не только удовлетворить нынешний спрос, но и обеспечить повышенный спрос в будущем. [c.666]

    Американцы относятся к основным потребителям белков животного происхождения их традиции в питании менее жесткие и больше ориентированы на диетические соображения. [c.667]

    В основе иммунохимического метода контроля гомогенности исследуемого белка лежит реакция преципитации его с соответствующей антисывороткой, полученной от иммунизированных этим белком животных. Для строгого доказательства гомогенности белка требуется одновременное использование нескольких методов. [c.33]

    Белки — основа всякой живой материи — высокомолекулярные естественные соединения, построенные из аминокислот. От них зависят все важнейшие и характерные черты и функции организма. В состав любого белка животных и растительных организмов входят аминокислоты — карбоновые кислоты, группа органических соединений, имеющих в своем составе аминогруппы (ННг) и карбоксильные группы (СООН), вследствие чего они обладают амфотерными свойствами, т. е. одновременно основными и кислотными. [c.78]

    Наиболее близки к незаменимому белку животные белки. Большинство растительных белков содержат недостаточное количество незаменимых аминокислот (одной или нескольких). Так, например, белки злаковых культур, а следовательно, и полученные из них продукты неполноценны по лизину, метионину, треонину. В белке картофеля, ряда бобовых не хватает метионина и цистина (60—70 % оптимального количества). [c.19]

    У растений остов растительной клетки образует клетчатка, но и здесь белки выполняют жизненно важные функции, сосредоточиваясь в основном в семенах. Растения способны синтезировать аминокислоты и белки, используя в качестве источника азота неорганические соединения, животные же для нормального существования должны получать белки с пищей. В процессе пищеварения белки расш,енляются на амшюкислоты, которые током крови разносятся по всему организму и служат строительным материалом для создания белков животных организмов. [c.332]

    Использование этих ПБР предполагается из-за наличия в них белков или посредством введения в классические продукты питания, или созданием новых продуктов (обычно им придают волокнистую структуру, имитирующую текстуру мясных продуктов). Из-за функциональных свойств их вводят в пищевые полуфабрикаты, требующие дополнительных ингредиентов при изготовлении. Интерес агропищевых отраслей производства к таким промежуточным продуктам, обладающим специфическими свойствами в отношении белков животного происхождения (молочные продукты, яйца, мясо или кровь), сам по себе обеспечивает расширение сбыта в развитых странах и приведет к появлению продуктов, видоизмененных химической или физической обработкой, или даже хорошо очищенных белковых фракций. [c.360]

    Библиографических сведений о влиянии тепловой обработки на поверхностно-активные свойства белков и их способность образовывать эмульсии и пену довольно мало. Тем не менее проведено одно обобщающее исследование [44] по различным белкам животного и растительного происхождения. Авторы установили, что термическая денатурация, которая происходит во всех случаях за счет повышения гидрофобности поверхности макромолекул, как правило, не улучшает эмульгирующие свойства. Как свидетельствуют результаты этого исследования, с одной стороны, эмульгирующие свойства оптимальны, когда гидрофобность поверхности, измеренная по методу Като и Накаи [24], находится в пределах 280—350, а с другой стороны, стабильность эмульгирования повышается для этой зоны гидрофобности, если снижается растворимость. Ввиду этого для каждого белка необходимо подбирать оптимальные параметры тепловой обработки (продолжительность, температура, pH, ионная сила) с целью достичь этой благоприятной зоны (режима обработки). [c.522]

    Эти технологические процессы позволяют добиваться макроскопического структурирования однородной белковой пасты юсредством интенсивных механических воздействий. Пасту, которая может содержать не только растительные белки, но также овальбумин, белки молока или другие белки животного происхождения, сначала коагулируют. Эта коагуляция возможна посредством простой термообработки [78] или коагуляции альгината после добавления солей кальция [7]. В первом случае полу- чаемый коагулят интенсивно перемешивают с помощью лопастной мешалки, во втором случае сгусток измельчают вращающимся ножом. Полученный продукт можно затем обрабатывать путем промывки, варки или прожаривания и пропитывать различными, красящими и ароматизирующими добавками. [c.559]

    Растительные белки составляют неогьемлемую часть нашего традиционного питания ввиду их присутствия в пищевых продуктах растительного происхождения (хлеб, овощи) и в ряде продуктов и кулинарных изделий животного происхождения классическое использование пшеничной муки в пастах, паштетах, рулетах, студнях, кнелях, фрикадельках, муки из съедобного каштана в некоторых местных сортах кровяной колбасы и т.п.). Даже если доля растительных белков в рационе питания человека снизится за счет уменьшения потребления хлеба и других пищевых продуктов растительного происхождения и увеличения потребления белков животного происхождения, растительные белки в питании человека все равно будут играть немалую роль. Благодаря прогрессу технологии появилась реальная возможность получения белков, более или менее полностью выделенных из растительных источников, и использования их в очищенной форме. В самом деле, теперь можно вырабатывать продукты, содержание белков в которых колеблется от 50 % (различные виды муки) до 60—65 (концентраты) и даже до 90 % (изоляты). [c.628]

    Можно еще констатировать, что растительные белки не могут без предосторожностей использоваться во всех продуктах и кулинарных изделиях. В настоящее время их применяют в основном с мясом. Название растительные белкн плохо согласуется в сознании потребителя с белками животного происхождения. Существуют также зерновые продукты с текстурированными растительными белками , и, поскольку эти продукты больше известны благодаря содержанию в пих углеводов (игнорируется роль клейковины), эта добавка может вызвать удивление. В колбасных изделиях, в которые включается несколько ингредиентов, и в готовых блюдах, известных многокомпонентностью, добавление растительных белков может легче восприниматься и даже признаваться. Поскольку дополнительное введение необязательно, то их применение расширяется за счет замены животных белков. Может оказывать благоприятное действие и диетологическое соображение при условии, что форма представления про- [c.673]

    Беецв. крист. Раетв-еть р. Н2О. Аналог метионина. Может полн. замешать метионин в белках Е. oli. Найден также в белках животных, пасущихся на пастбищах, богатых соединениями Se. [c.229]

    Аминокислоты, пептиды, белки и ферменты образуют группу химически и биологически родственных соединений, которым принадлежит исключительная роль во многих жизненно важных процессах [1, 2]. Биогенная связь этих веществ подтверждается полным гидролизом белков и пептидов, которые распадаются на а-аминокарбоновые кислоты (HjN- HR- OOH). Все аминокислоты можно рассматривать как С-замещенные производные аминоуксусной кислоты. К настоящему времени из гидролизатов белков выделено более 20 аминокислот, которые по конфигурации асимметрического атома углерода принадлежат к 1-стерическому ряду, отличаясь друг от друга в основном остатками заместителей [3-5]. а-Аминокислоты, имеющие цвиттерионную природу, являются наиболее важными и многочисленными среди всех аминокислот, встречающихся в природе. Общее число а-аминокислот, идентифицированных в свободном или связанном виде из живых организмов, исчисляется сотнями, и число их увеличивается [1,2]. Все а-аминокислоты, обнаруженные в белках, за исключением глицина, хиральны [3, 6]. Больщинство других а-аминокислот, обнаруженных в природе, также имеют -конфигурацию а-углеродного атома, однако известны многие природные а-аминокислоты D-ряда [7]. D-ами-нокислоты выделены из микроорганизмов [8, 9], растений [7, 10, 11], грибов [12], насекомых [13] и морских беспозвоночных [14, 15]. Также эти кислоты найдены в белках животных [16] и в пептидах, выделенных из раковых новообразований [17]. Природные галогенированные а-аминокислоты и пептиды редко встречаются в природе, и их можно отнести к новой группе соединений [18-20]. [c.289]

    Альбумины — белки животных и растительных тканей. Альбумин крови животных и человека состоит из одной полипептидной цепи, включающей в себя 575 аминокислотных остатков с повышенным содержанием аспарагиновой и глутаминовой аминокислот, его молекулярная масса равна 69 kDa. Это [c.47]

    К ферментам внеклеточного типа можно отнести микробные амилазы, липазы и петид-гидролазы, катализирующие реакции гидролиза соответственно крахмала, жиров и белков Животная протеаза (пепсин) условно также может быть причислена в разряд внеклеточных, так как она поступает из соответствующих клеток (главных клеток слизистой оболочки желудка) в полость желудка, то же можно сказать и о ферментах поджелудочной железы, поступающих в просвет двенадцатиперстной кишки [c.48]


Смотреть страницы где упоминается термин Белки животные: [c.299]    [c.403]    [c.15]    [c.12]    [c.18]    [c.509]    [c.596]    [c.600]    [c.616]    [c.49]    [c.27]    [c.61]    [c.14]    [c.201]    [c.24]    [c.408]   
Органическая химия (1963) -- [ c.445 ]




ПОИСК







© 2024 chem21.info Реклама на сайте