Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионообменная очистка

    В результате ионообменной очистки катионитом и анионитом доброкачественность ксилозных сиропов повышается от 85 до 95—97%, а содержание уроновых кислот снижается до 1—3%. Также удаляется основное количество зольных элементов, органических кислот, азотистых, красящих и коллоидных веществ. Типичная характеристика очищенного с помощью ионного обмена раствора приведена в табл. 5.1. [c.150]


Рис. 6.9. Схема ионообменной очистки сточных вод от аминов Рис. 6.9. <a href="/info/1843044">Схема ионообменной очистки</a> сточных вод от аминов
    Каждая из колонн для ионообменной очистки рассола работает периодически, так как по мере накопления в ионообменной смоле примесей уменьшается обменная емкость смолы и наступает момент, когда в выходящем из нее рассоле допустимая концентрация примесей превышена. При исчерпании обменной емкости смолы колонну отключают от общей цепи и переводят на работу в режиме регенерации. [c.107]

Рис. 90. Влияние температуры, длительности ионообменной очистки и pH среды на коксообразующий фактор Рис. 90. <a href="/info/15368">Влияние температуры</a>, длительности <a href="/info/148894">ионообменной очистки</a> и pH среды на коксообразующий фактор
    Физико-химические методы очистки, как и химические, наиболее широкое применение нашли в процессах производства нефтяных масел и их регенерации. Удаление загрязнений из масел при использовании этих методов происходит за счет коагуляции и последующего осаждения, адсорбции или растворения загрязнений. Разновидностью адсорбционной очистки является ионообменная очистка. [c.118]

    Ионообменная очистка основана на способности ионообменных смол (ионитов) удерживать те загрязнения, которые в растворенном состоянии диссоциируют на ионы. Иониты получают путем полимеризации и поликонденсации органических веществ они представляют собой твердые гигроскопичные гели, не растворимые в воде и углеводородах. В высокомолекулярной пространственной решетке ионита закреплены фиксированные ионы. Заряды этих ионов компенсируются зарядами противоположного знака, принадлежащими подвижным ионам (противоионам), расположенным в ячейках решетки и способным к обмену с ионами раствора электролита. Иониты, содержащие активные кислотные группы и подвижные катионы, способные к обмену, называются катионитами, а иониты с активными основными группами и подвижными анионами — анионитами. [c.125]


    Имеется опыт ионообменной очистки при регенерации трансформаторных масел с целью удаления из них органических кислот, образовавшихся в процессе эксплуатации масел [45]. Для этого используют аниониты [c.125]

    Ионообменная очистка имеет сходство с адсорбцией. Несмотря на различия в механизме действия адсорбентов и ионитов, четко разграничить эти методы трудно, так как ионообмен почти всегда сопровождается адсорбцией, а некоторые адсорбенты, например окись алюминия, частично обладают свойствами ионитов. Ионообменная очистка позволяет нейтрализовать в масле продукты кислотного характера, но не обеспечивает удаления из него смолистых веществ. [c.126]

    Показано также, что на качество ионообменной очистки влияет вид кислоты, применяемой для обработки суспензии. Наиболее активный катализатор получается при использовании для ионизации суспензии лимонной кислоты. [c.226]

    Ксилозный сироп после фильтрования - направляется на ионообменную очистку. Сведения об общей характеристике ионообменных смол, механизме процесса ионного обмена, требования, предъявляемые к ионитам, их регенерации, приведены в специальной литературе [5]. [c.148]

    Очищенный таким путем ксилозный раствор содержит еще небольшое количество азотистых, коллоидных и красящих веществ, зольных элементов и органических кислот, включая уроновые, которые отрицательно влияют на процесс гидрирования это вызывает необходимость дополнительной ионообменной очистки ксилита. [c.150]

    В настоящее время для ионообменной очистки промышленных сточных вод применяются только синтетические ионообменные смолы. Очень важное значение имеет выбор наиболее рациональной схемы регенерации ионитов. [c.348]

    Доброкачественность раствора ксилита (по сумме многоатомных спиртов) после ионообменной очистки составляет 96—98%. В результате подобной очистки изменяется состав зольных элементов ксилита, о чем свидетельствуют следующие данные по составу золы ксилита (% к массе золы) [7]  [c.163]

    Раствор ксилита после ионообменной очистки упаривают сначала на трехкорпусной выпарке и, наконец, в вакуум-аппарате до содержания сухих веществ 91—94% (в зависимости от доброкачественности раствора). [c.163]

    Схема производства сорбита, осуществленная на заводе фирмы Мерк в США [18], отличается от описанной тем, что раствор глюкозы перед гидрированием подвергают ионообменной очистке, 3 также несколько другим аппаратурным оформлением процесса и, в Частности, тем, что гидрирование глюкозы осуществляют в автоклавах периодического действия. Гидрирование глюкозы ведут [c.166]

    Принципиальная технологическая схема ионообменной очистки сточных вод от аминов представлена на рис. 6.9. Сточная вода принимается в сборник I, куда дозируется из мерников 2 соляная кислота для понижения pH до 4—4,5. Подкисленная вода насосом 18 подается на фильтр 4, где отделяется от выпавших при подкислении взвесей. Фильтрат принимается в бак 5 и со скоростью около 2 м /(м -ч) поступает в блок последовательно включенных колонн с катионитом 6, 7, 8. Для регенерации колонн из мерника 10 аммиачно-метанольный раствор насосом 16 подается в регенерируемые колонны снизу вверх. Из колонны регенерационный раствор выпускается в приемник 14, откуда насосом 13 подается в ректификационную колонну 11 для отгонки метанола и аммиака. Из кубового остатка этой колонны выделяют сырые амины, которые направляются на регенерацию. После регенерации катионита аммиачно-метанольным раствором его переводят в водородную форму 10%-ным раствором соляной кислоты, поступающим из мерника Общий объем водных растворов, необходимых для регенерации, составляет 28— 30% от объема очищенной воды. [c.348]

Рис. 25.2. Установка для ионообменной очистки воды Рис. 25.2. Установка для <a href="/info/148894">ионообменной очистки</a> воды
    Существует несколько методов обессоливания воды. Наиболее перспективный метод — электрохимический, который по своим технико-экономическим показателям превосходит дистилляцию и ионообменную очистку. [c.438]

    Используют также методы экстракционной и ионообменной очистки растворов. При экстракционной очистке растворов примеси извлекают экстрагентом, органическим веществом, которое не должно растворяться в очищаемом растворе. Так, например,, из растворов сульфата меди экстракцией трибутилфосфатом извлекают мышьяк. [c.253]

    Для ионообменной очистки используют ионообменные смолы, угли, гидросиликаты, способные замещать ионы примесей раствора на ионы водорода или гидроксид-ионы. [c.253]

    Циклические ионообменные процессы широко используются в промышленности, однако вопросы их моделирования и расчета изучены еще мало и затрагиваются только в связи с оптимизацией ионообменной очистки воды /I/. [c.143]


    Аширов А. Ионообменная очистка сточных вод, растворов и газов. Л. Химия, [c.350]

    Ионообменная очистка наиб, распространена для обессоливания воды (см. Ионный обмен). Разработаны процессы [c.434]

    В Харуэлле [126] в результате ионообменной очистки на минеральном катионите вермикулите получена очистка от а-излучателей в среднем на 99,95% и от р-излучателей в среднем на 99,36%. [c.87]

    Станция для очистки сбросных вод имела следующие основные технологические отделения биологической, химической и ионообменной очистки, приготовления реагентов и переработки шламов и регенерационных растворов. Стоки биологической группы проходили первичное отстаивание в отстойнике, затем обработку активным илом в аэротенке и вторичное отстаивание, [c.212]

    Для отделения катализатора от раствора сорбита суспензия поступает на фильтр-пресс 10. Катализатор после отделения раствора сорбита промывается на фильтр-прессе и используется вновь для процесса гидрирования. Раствор сорбита после фильтр-пресса направляется в сборник 11, а промывные воды —в сборник 2, откуда насосами подаются на ионообменные фильтры. Ионообменная очистка раствора сорбита производится на батарее из двух ионообменных фильтров сперва раствор очищается на катионите, а затем — на анионите. По окончании цикла ионообмена для вытеснения раствора сорбита из фильтров вначале подаются промывные воды из сборника 12, а затем — вода. Регенерация анионитов производится раствором едкого натра, катионитов —раствором соляной кислоты. [c.169]

Рис. 35, Технологическая схема производства D-сорбита непрерывным процессом гидрогенизации и ионообменной очистки Рис. 35, <a href="/info/66466">Технологическая схема производства</a> D-сорбита <a href="/info/25665">непрерывным процессом</a> гидрогенизации и ионообменной очистки
    На рис. 35 изображена технологическая схема производства D-сорбита с применением непрерывного процесса гидрогенизации D-глюкозы и ионообменной очистки сорбитного раствора. Элеватором / глюкозу загружают через бункер 2 в реактор смеситель 3, в котором приготовляют 30%-ный водный раствор. Добавляют 0,5% к массе глюкозы активированного угля и после перемешивания в течение 5—10 мин ири температуре 75° С фильтруют через нутч-фильтр 4 в сборник 5, откуда насосом 6 перекачивают в смеситель 7 (небольшого объема). Туда же непрерывно подают настой известковой воды из мерника-смесителя 8 и катализатор Реней-никель. Раствор глюкозы насосом высокого давления 9 подают в тройник смешения 10. Сюда же компрессором и нагнетают водород под давлением 80—100 кгс/см и суспензию направляют в подогреватель 12, где температуру газо-жидкостной смеси повышают до 135—140° С. Далее суспензия непрерывно поступает последовательно в три реактора 13, проходит холодильник 14, где охлаждается до 30—40° С, сепаратор 15, кайл еот дел итель 75. Гидрированный раствор направляют в сборник 17 и далее на очистку ионитами. Водород из каплеотделителя 16 многоступенчатым компрессором 18 подают в тройник смешения 10. Убыль водорода в системе компенсируют нагнетанием свежего водорода компрессором 11 из газгольдера 19. Для безопасной работы системы должны быть предусмотрены необходимые предохранительные клапаны и аварийные вентили для сброса водорода из системы через вытяжную трубу с предохранительной свечой в атмосферу. Раствор сорбита из сборника 17 насосом 20 передают в смеситель 21, в котором раствор водой или промывными водами, получаемыми при отмывке смол от сорбита, разбавляют до нужного содержания сухих веществ, фильтруют через нутч-фильтр 22, сливают в сборник 23 и далее насосом 24 нагнетают в колонну с катионитом КУ-2, а из нее в колонну с анионитом, где pH раствора повышается до 4,0—4,5. Из колонн 25—26 очищенный раствор направляют в сборник 27 и далее на окисление. [c.253]

    Кси лозно-дрожжевое производство. В кач-ве сырья для получения кснлозы применяют растит, отходы (овсяную и хлопковую шелуху, кукурузную кочерыжку), в к-рых преобладают пентозаны (ксилан) и содержится миним. кол-во минер, и орг. примесей. Для нх удаления сырье, предварительно пропитанное к-той, обрабатывают горячей водой. Процесс осуществляют в две ступени. На первой проводят перколяционный пентозный гидролиз при 140 С, что исключает гидролиз целлюлозы. Переработка гидроли-зата включает осветление его активным углем, отделение взвешенных в-в отстаиванием н фильтрацией, инверсию и ионообменную очистку от минер, н орг. прнмесей, упаривание р-ра и выделение кснлозы кристаллизацией (до 300 кг) Послед, гидрированием ксилозы получают кристаллич. ксилит (до 125 кг). На второй ступени остаток после гидролиза-целлолигнин перерабатывают так же, как в пронз-ве фурфурола. См. также Лесохимия. [c.564]

    При ионообменной очистке ксилозных растворов необходимо удалить не только максимально возможное количество зольных элементов и кислот, но также красящих и азотистых веществ, которые в дальнейшем отрицательно влияют на процесс гидрирования, В золе ксилозного сиропа, полученного из гидролизатов хлопковой шелухи, содержится SiOj 26% Р2О5 5% MgO 13 /о СаО 7% SO3 23% окислов МегОз 20%. [c.148]

    Полученные из линта гексозные гидролизаты содержат 13— 15% РВ, имеют доброкачественность 70—72%. Для получения из гидролнаата сорбита они подвергаются осветлению активным углем (5% к сухим веществам), затем ионообменной очистке, которая осуществляется в четырехзвенной батарее по схеме АН-1—> —>-ЭДЭ-10п—>-КУ-1— -ЭДЭ-Юп (при соотношении объемов набухших смол 1,0 1,0 1,27 1,27 [28]). В результате ионообменной очистки доброкачественность гексозного гидролизата повышается до 91,8%. Очищенный гидролизат подщелачивают раствором едкого натра до pH 7,4—7,6 и гидрируют с применением стационарного никель-алюминиевого катализатора, промотированного титаном, под давлением 10 МПа при температуре в подогревателе 90°С, внизу реактора 110°С, в середине и на выходе из реактора 125—130 °С. Полученный после гидрирования раствор сорбита с концентрацией сухих веществ около 10% подвергают ионообмен- [c.171]

    Б. С. Колычев [40] приводит данные по технологической схеме установки для очистки жидких отходов среднего уровня активности, работавшей в Харуэлле. Установка имела 24 приемных бака емкостью по 10 каждый, сгруппированных в шести хранилищах прямоугольной формы. Первая технологическая операция — осаждение СаНР04 и u2[Fe( N)в], затем отстой в течение трех суток, после чего осадки (шламы) выгружались в отстойные колонки, а осветленные растворы направлялись на ионообменные фильтры или дистилляцию. При осадительных операциях удавалось удалить в среднем до 99% а-излучателей и около 89% р-излуча-телей. Оптимальные параметры технологического процесса рН=11,5 отношение Р0 Са2+= 1,6 минимальное количество Са + — 50 мг/л. После ионообменной очистки удавалось почти полностью избавиться от а-излучателей и снизить содержание р-излучателей до 0,3—0,5% исходного. В качестве ионообменника применялся вермикулит, процесс осуществлялся в корзиночных центрифугах. [c.217]

    Ионообменной очистке от органических электролитов поддаются преимущественно маломинерализованные сточные воды. При извлечении органических оснований или их солей (алифатических или ароматических аминов, азотистых гетероциклов и т. п.), образующих одновалентные катионы, важно, чтобы минеральный состав сточных вод определялся солями щелочных металлов, поскольку двухвалентные катионы кальция, магния и тем более трехвалентные катиоь ы, например железа, поглощаются катионитами настолько сильнее органических катионов, что вытесняют последние в раствор в широком интервале соотношения концентраций. [c.347]

    Осаждение на катоде хрома из растворов, содержащих ионы Сг + и Сг +, осуществляется при достаточно электроотрицательных потенциалах, при которых будут восстанавливатвся ионы меди, цинка, свинца и металлов железной группы. При получении Бысокочисто го хрома необходимо применять хромовый ангидрид, свободный от примесей тяжелых металлов, а также воду, дистиллированную или пропущенную через колонки ионообменной очистки. [c.533]

    Объем осадков зависит также от применяемых методов очистки (минимальный объем осадков — при ионообменной очистке, до 15 % при нейтрализации смешанного потока сточных вод известковым молоком). Для уменьшения объемов образующихся осадков целесообразно вести раздельную очистку по потокам сточньгх вод. [c.20]

    Часто в паровых котлах используют воду, содержащую сульфат кальция, который при кипячении отлагается в виде накипи. Во избежание этого поступающую в котел воду иногда обрабатывают карбонатом натрия, что вызывает осаждение карбоната кальция в виде шлама и предотвращает образование накипи, состоящей из сульфата кальция. В некоторых случаях применяют тринатрийфосфат (КазР04), вызывающий осаждение кальция в виде шлама, состоящего из гидроксиапатита Са5(Р04)з0Н. В обоих случаях шлам периодически удаляют при чистке котлов. Большие современные котлы работают на деионизован- ной воде, получаемой путем ионообменной очистки с использованием органических смол. [c.244]

    Температура раствора при химической очистке, С. ... 85—90 Для ионообменной очистки применяют катионит КУ-2 и ани-оиит ЭДЭ-ЮП Выход сорбита, % [c.291]

    Промышленные аппараты для реализации И.о. Подразделяются на 3 группы установки типа смесителей-отстойников, фильтры с неподвижным и подвижным слоями сорбента. Аппараты первого типа используют в гидрометаллургии. В фильтрах с неподвижным слоем сорбента исходные и регенерац. р-ры подаются в одном направлении (поточные схемы) или в противоположных (противоточные схемы). Такие аппараты используются для ионообменной очистки р-ров, напр, при умягчении и обессоливании воды. В непрерывно действующих противоточных аппаратах подвижный сорбент, как правило, перемещается сверху вниз под действием силы тяжести. Конструктивно противоточные аппараты подразделяются на 3 группы со взвешенным или кипящим слоем ионита, с непрерывным движением плотного слоя, с попеременным движением р-ра через неподвижный слой и перемещением слоя при прекращении движения р-1за. Для разделения смесей близких по св-вам компонентов (напр., изотопов) используют малопроизводительные, но эффективные аппараты с поочередным движением фаз и со сплощным слоем периодически выгружаемого сорбента. Технол. схема И. о включает сорбцию извлекаемых или удаляемых элементов, взрыхление слоя ионита (током р-ра снизу вверх), регенерацию ионита, промывку слоя ионита от регенерирующего р-ра. [c.262]

    Температура. Влкявтие температуры на коэффициент ра ше-ления невелико, поскольку ионообменная очистка вещестп осуществляется в сравнительно узкой температурной области (О — 80 С). Тем не менее, с повыишнием температуры коэффициент [c.201]


Смотреть страницы где упоминается термин Ионообменная очистка: [c.219]    [c.112]    [c.126]    [c.226]    [c.102]    [c.172]    [c.103]    [c.126]    [c.106]    [c.176]    [c.67]    [c.190]   
Смотреть главы в:

Ионообменная технология -> Ионообменная очистка

Утилизация и очистка промышленных отходов -> Ионообменная очистка

Ионообменная технология -> Ионообменная очистка

Очистка сточных вод в химической промышленности -> Ионообменная очистка


Органическая химия (2001) -- [ c.382 ]

Пульсационная аппаратура в химической технологии (1983) -- [ c.0 ]

Органическая химия Издание 2 (1980) -- [ c.291 ]

Утилизация и ликвидация отходов в технологии неорганических веществ (1984) -- [ c.0 ]

Очистка сточных вод в химической промышленности (1977) -- [ c.163 , c.255 , c.258 , c.329 , c.345 , c.346 , c.419 ]

Справочник по обогащению руд Издание 2 (1983) -- [ c.166 ]




ПОИСК







© 2025 chem21.info Реклама на сайте