Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поверхность межфазная в системах газ—жидкость

    Кинетику превращений в системе жидкость (газ) — жидкость рассмотрим на примере абсорбции газа жидкостью с одновременной химической реакцией, считая, что реакция проходит только в жидкой фазе. До сих пор для количественного описания таких превращений широко используется пленочная теория Льюиса и Уитмена. Согласно этой теории, по обе стороны межфазной поверхности газ —жидкость существуют ламинарные пограничные пленки. Несмотря на то, что пленочная теория гидродинамически обоснована только для газа, она проста и удобна в применении. Предполагается, что вне пределов пограничных плепок изменения концентраций реагентов в направлении, перпендикулярном к межфазной поверхности, отсутствуют, а на поверхности контакта фаз между концентрациями абсорбируемого компонента в жидкости и в газе устанавливается динамическое равновесие. В состоянии такого равновесия зависимость между парциальным давлением газообразного компонента и его концентрацией в жидкой фазе выражается законом Генри. Принятая модель процесса используется при изотермических условиях его проведения. [c.250]


    Адсорбция на однородной плоской поверхности раздела фаз. Уравнение изотермы Гиббса. Однородная плоская граница раздела фаз образуется при контакте двух жидкостей или жидкости с газом, и адсорбция происходит в поверхностном слое между ними. В связи с этим целесообразно рассмотреть более подробно межфазную границу жидкость — жидкость и жидкость — газ. Ранее отмечалось, что в реальных системах локальные свойства при переходе от одной фазы к другой изменяются не резким скачком, а постепенно. Условно характер изменения свойств [c.52]

    Наиболее доступными для экспериментального измерения поверхностного натяжения являются системы жидкость — газ и жидкость — л<идкость. Существующие методы дают возможность измерять о при неподвижной межфазной поверхности (статические) и при движущейся поверхности раздела (динамические). Недостатком динамических методов является сложность их аппаратурного оформления. Кроме того, для надежного измерения поверхностного натяжения растворов, и, в частности, растворов ПАВ, необходимо их выдерживать определенное время для установления равновесия в поверхностном слое. [c.11]

    Гельперин Н. И., С к л о к и н Л. И., А с с м у с М. Г., Определение удельной межфазной поверхности в системах жидкость—жидкость при нормально-логарифмическом распределении капель по размерам методом [c.585]

    J Несмотря па физическую реальность ПС, вызванного явлениями адсорбции и гетерогенной химической реакции, до последнего времени не было полной уверенности в его существовании. Для определения ПС наиболее часто применялись методы изучения массопередачи в стационарных или квазистационарных условиях, требующие использования правила аддитивности. Учитывая сложность явлений на межфазной поверхности в системах жидкость — жидкость, надежное определение малых значений ПС по правилу аддитивности можно поставить под сомнение. Так, поверхностное сопротивление, обнаруженное в работах [56—58], пе подтвердилось другими [59, 60]. [c.389]

    Ковалев Ю. П., Каган С. 3., Межфазная поверхность в системах жидкость— жидкость при механическом перемешивании, сб. Процессы жидкостной экстракции и хемосорбции , Труды П Всесоюзного совещания по жидкостной экстракции и хемосорбции, изд, Химия , 1965, стр. 43. [c.687]

    МЕЖФАЗНАЯ ПОВЕРХНОСТЬ В СИСТЕМАХ ЖИДКОСТЬ-ЖИДКОСТЬ ПРИ МЕХАНИЧЕСКОМ ПЕРЕМЕШИВАНИИ [c.43]

    Разработана (138] методика, определения межфазной поверхности в системах жидкость—жидкость с использованием лазера. Это позволяет проводить" измерения при строго монохроматическом пучке света, что повышает точность надежность опытных данных. [c.92]


    Опыты 16] показали, что уменьшение d p пропорционально и,-о.б также указывает на иной характер зависимости среднего диаметра капель от скорости потока. Трудность поиска обобщающих уравнений для расчета среднего диаметра капель обусловлена рядом факторов. Прежде всего это связано с существенной ролью в механизме диспергирования пристенных слоев жидкости и с наличием в реальных аппаратах застойных зон, где коалесценция превалирует над актами дробления. Немаловажную роль играют и адсорбционные явления на поверхности капель, изменяющие их межфазное натяжение. Поэтому при определении среднего размера капель или удельной поверхности контакта фаз системы жидкость—жидкость наиболее надежные результаты могут дать опыты, проведенные на модели аппарата, условия работы которой максимально приближены к реальным. [c.61]

    При рассмотрении возможных случаев соприкосновения жидких фаз с твердыми телами следует иметь в виду также наличие в некоторых случаях окружающего воздуха, поэтому на поверхности раздела действует межфазное натяжение не только в системе жидкость — твердое тело, но и жидкость — газ, твердое тело — газ. [c.474]

    В системе жидкость — твердая фаза (где твердой фазой служат NaOH, КОН, К2СО3, ЫагСОз) такой обмен не идет. В этом случае реакции, например депротонирование, по-видимому, проходят на поверхности раздела фаз, а катализатор межфазного переноса просто снижает энергию барьера реакции (как в случае гетерогенного катализа). Более подробно механизм межфазного катализа обсужден в следующем разделе. [c.8]

    В спеченных образцах жидкий кобальт не может раздвинуть частичек и проникнуть по границе их контакта, так как при этом должна уменьшиться площадь контакта частиц W — С и увеличиться толщина прослоек кобальта, т. е. необходимо, чтобы в образец поступил некоторый объем жидкой фазы. Оттекание расплава у-фазы от поверхности образца с образованием каналов, заполненных газообразной фазой, исключается, потому что замена межфазной поверхности твердое тело — жидкость на межфазную поверхность твердое тело — газ в системе ШС — Со происходит с увеличением изобарно-изотермического потенциала системы. [c.97]

    Развивается общая строгая теория избыточной поверхностной энтропии и энергии для бинарной системы жидкость—жидкость. Особое внимание уделяется подбору подходящих разделяющих поверхностей Гиббса и тому факту, что энергия и энтропия определяются только с точностью до аддитивной константы. Последующее рассмотрение приводит к выбору чистых жидкостей в качестве стандартных состояний для систем, в которых низка взаимная растворимость. Такой выбор приводит к простым выражениям для поверхностной энергии и энтропии, которые допускают интерпретацию в терминах структуры межфазной поверхности, градиентов концентраций и молекулярных сил. В частном случае, когда низка взаимная растворимость, результатом являются выражения [c.63]

    Термодинамическая теория капиллярности Гиббса положила начало громадному числу исследований как экспериментального, так и теоретического плана, направленных на выяснение структуры межфазных поверхностей. В научном плане важной частью этих исследований являются бинарные системы жидкость—жидкость. В таких системах возможно измерить поверхностное натяжение и его производные по температуре и давлению, а также изучить диффузность межфазной поверхности оптическими методами. Теоретическая интерпретация этих результатов с использованием статистико-механических моделей различной степени приближения была развита рядом авторов и мы упомянем некоторых. Важно отметить, что все такие исследования требуют обращения к термодинамике, т. е. к методам Гиббса, как только мы доходим до связи теоретических моделей с наблюдениями, которые могут быть сделаны в лаборатории. [c.64]

    Эффективная энергия активации гетерогенных реакций в системах жидкость — жидкость обычно не превышает 30 ккал/моль, однако наиболее часто встречающаяся величина лежит в пределах 9—15 ккал/моль. Данные об энергии активации адсорбции и десорбции на межфазной границе двух жидкостей в литературе отсутствуют. Однако если рассматривать процессы на твердой поверхности, то энергия активации физической адсорбции измеряется несколькими сотнями малых калорий на моль. Таким образом, при физической адсорбции должен существовать десорбционный барьер, численно равный теплоте адсорбции [96]. Энергия активации процессов хемосорбции на твердых поверхностях может достигать значений, характерных для химической реакции. [c.397]

    Диаметры капель (пузырьков) и межфазная поверхность дисперсной системы являются важными параметрами при расчете массообмена. Определенной функциональной зависимостью диаметры капель (пузырьков) связаны с удельной межфазной поверхностью а, выражаемой в м /м , а также с объемной долей дисперсной фазы Ф , выражаемой в м /м . Эту зависимость на примере системы жидкость-жидкость можно вывести, исходя из приведенных ниже рассуждений. [c.148]


    Сплошная фаза. В настоящее время проведено большое количество исследований массообмена во время перемешивания в системе жидкость—газ. В большинстве случаев результаты исследований обработаны относительно произведения кса = к с, так как лишь совсем недавно были разработаны методы измерения межфазной поверхности [4, 28, 64, 80]. На основе выполненных разными авторами исследований можно принять, что коэффициент массоотдачи зависит от следующих переменных  [c.332]

    Диспергирование в системах жидкость—жидкость, газ-жидкость применяется для создания развитых межфазных поверхностей Р, обеспечивающих высокую интенсивность тепло- и массообменных процессов. В этом случае в пропускной способности кР поверхностной стадии процесса переноса прежде всего существенно увеличивается Р кроме того, диспергирование часто сопровождается также повыщением коэффициента тепло-или массопередачи к. Для указанных выше дисперсных систем размер капель (пузырьков), их распределение по размерам и межфазная поверхность являются важными технологическими факторами при организации процессов переноса и расчете тепло- и массообменных аппаратов. [c.461]

    Диаметр капель (пузырьков) О связан с удельной межфазной поверхностью а (м /м ) и объемной долей дисперсной фазы ф [(л<з дисперсной фазы)/(л<з объема системы)]. Эту связь можно выявить из следующих соображений, например, для системы жидкость—жидкость. Заменим неодинаковые по размерам капли, находящиеся в 1 м эмульсии, на п шарообразных капель с теми же суммарной поверхностью и объемом тогда средний объемно-поверхностный диаметр таких капель 0 2 определяется соотношениями [c.461]

    Поверхностное натяжение с определяется как работа W внешних сил над системой, необходимая для увеличения площади А поверхности межфазной границы на единицу в обратимом изотермическом процессе, т. е. а = IV/ АА. Увеличение площади границы фаз требует перемещения этих молекул из объемной фазы в поверхностный слой, что совершается против силы их втягивания F в глубь жидкости, на что и тратится энергия внешних сил. [c.552]

    Извлечение целевых компонентов как из жидкостей, так и из твердых пористых тел нередко называют экстракцией (иногда экстрагированием) без уточнений или с добавлением жидкостная , жидкофазная , в системе жидкость—жидкость , из твердого тела , в системе твердое тело—жидкость . Возможно, это связано с формальным сходством уравнений материального баланса и методов расчета процессов в статических условиях с использованием прямоугольных и треугольных диаграмм. Между тем кинетика процессов в системах жидкость—жидкость и твердое тело— жидкость существенно отличается. Например, в системе -жидкость— жидкость межфазная поверхность зависит от гидродинамических условий в аппарате, а в системе твердое тело—жидкость она формируется на предшествующей операции измельчения и от гидродинамики не зависит. [c.50]

    Имеется и другое доказательство в пользу сетчатой структуры [241. В защитном слое непредельной эмульсии иногда присутствуют молекулы ВМС, не соприкасающиеся с поверхностью раздела фаз. Доказывается это опытами по адсорбции на капельках разбавленной эмульсии, которую определяли но понижению межфазного натяжения в системе жидкость — жидкость до и после эмульгирования. В ряде случаев адсорбировалось такое количество ВМ ПАВ, которое не могло разместиться на поверхности даже нри насыщенном мономолекулярном слое. [c.424]

    Характерным свойством коллоидных ПАВ является их способность адсорбироваться на поверхностях раздела двух фаз жидкость — газ, жидкость — жидкость или жидкость — твердое тело. Природа поверхности в результате адсорбции радикально изменяется, и наиболее общим следствием этого процесса является понижение межфазного натяжения. В случае системы жидкость — газ или жидкость — жидкость межфазное натяжение можно измерить и на основании полученных данных вычислить величину адсорбции (или, точнее, поверхностный избыток) с помощью хорошо известного уравнения адсорбции Гиббса, выражающего термодинамическую зависимость между этими двумя величинами. Следует, однако, заметить, что это фундаментальное уравнение имеет различный вид в зависимости от природы ПАВ, а именно в зависимости от того, являются ли они электролитами или нет. Вывод различных вариантов уравнения Гиббса и их применимость будут рассмотрены во втором разделе этой главы. [c.200]

    Для определения величин межфазной поверхности в системах жидкость — жидкость широкое распространение получили методы светопросвечивания [115, 116, 132—138] и седиментации [139—142]. [c.90]

    Наибольщее распространение в литературе получила модель обновления поверхности, предложенная Кишиневским [16, 17] и Данквертсом [18]. В основе этой модели лежит представление о непрерывной замене элементов жидкости (или газа), прилегающих к межфазной поверхности, новыми элементами, поступающими на поверхность вследствие турбулентного перемешивания. В течение промежутков времени, когда элемент пребывает на поверхности, процесс массопередачн описывается, как и в теории Хигби, уравнением нестационарной диффузии в полубесконечной неподвижной" среде. Для характеристики интенсивности обновления вводится понятие среднего временл пребывания элементов жидкости на поверхности Дт. Первоначально такая картина была предложена -для описания массообмена в системах жидкость — газ, однако в дальнейшем ее стали использовать и для описания других систем, в частности систем жидкость — твердая стенка [19]. [c.173]

    Поверхностно-активные вещества (ПАВ)— химические сое-дписния, сиособные адсорбироваться на поверхности раздела фаз жидкость — твердое тело , жидкость — газ , жидкость — жидкость и т. д. и существенно изменять физико-химические свойства системы, в первую очередь поверхностное (межфазное) натяжение. Такое явление определяется ассиметричным, ди-фпльным характером молекул поверхностно-актпвного вещества, состоящих из полярной (гидрофильной) и неполярной (гидрофобной) групп. [c.189]

    Т h о m р S о п D. W., Ind. Eng. hem., Fund., 9, 243 (197b). Влияние подвижности межфазной поверхности на массопередачу в системах жидкость—газ (при воздействии градиентов поверхностного натяжения и плотности и в присутствии поверх-ностно-активных веществ в условиях абсорбции и десорбции различных газов). [c.290]

    Кюнне [11б] подробно исследовал гидравлику противоточных колонн с насадкой из орошаемых пластин. Опыты были проведены при комнатной температуре и атмосферном давлении с применением системы воздух—вода. Кюнне приводит методику измерений и предлагает метод расчета гидравлического сопротивления и верхней предельной нагрузки по газовой фазе. Один из методов экспериментального определения площади межфазной поверхности в системе газ—жидкость для пленочных колонн предложен Антоновым с сотр. [11 з]. [c.49]

    Сд — концентрация жидкого реагента у поверхности раздела с, — концентрация этого же реагента в состоянип равновесия S — поверхность контакта реагентов в системе жидкость — твердое тело (межфазная поверхность). [c.332]

Рис. VII1-1. Изменение концентраций на межфазной поверхности в системе твердое тело — жидкость. Рис. VII1-1. <a href="/info/24329">Изменение концентраций</a> на <a href="/info/4410">межфазной поверхности</a> в <a href="/info/147680">системе твердое тело</a> — жидкость.
    Кинетика ионного обмена. В результате химической реакции в растворе ионы перемещаются по направлению к ионообменной смоле или от нее. В этом случае общая скорость ионообмена будет зависеть от скоростей этапов диффузии через неподвижный слой зерен ионообменной смолы, а также скорости химической реакции на поверхности обмена. Так как ионные реакции протекают с очень большой скоростью, этапом, который определяет скорость процесса, является диффузия ионов через неподвижный спой. На межфазной поверхности системы жидкость — твердое тело практически мгновенно устанавливается равновесие. [c.339]

    Удельная межфазная поверхность полидгсперсной системы газовых пузырей определяется свойствами жидкости и газа и их приведенными скоростями и не зависит от конструкции барботера. Влияние последней на газосодержание, а следовательно, и на удельную поверхность контакта фаз проявляется только при малых высотах барботажного слоя, например на ситчатых тарелках массообменных аппаратов, где высота расширяющейся струи газа соизмерима с общей высотой слоя динамической пены. Влияние свойств газа и жидкости на величину а при массовом барботаже очень сложно, доказательством чего могут, например, служить результаты исследований удельной межфазной поверхности в бар-ботажном реакторе, секционированном ситчатыми тарелками [14]. Эти опыты показали, что при приблизительно одинаковых физических свойствах жидкостей (вязкости, поверхностном натяжении и плотности) величина а для растворов электролитов оказалась значительно выше, чем для недиссоциированных жидкостей. Различие значений а наблюдалось и для разных растворов электролитов при постоянстве указанных физических свойств жидкостей. [c.19]

    Некоторые исследователи определяли межфазную поверхность в системах с аппаратами диаметром до 0,45 м методом светорассеяния. Кальдербанк [15], проводя эксперименты с турбин-ньпш и лопастными мешалками, получил выражения для межфаз-Бой поверхности в единице объема жидкости при Фд,= 0—0,2  [c.172]

    Состояние вещества около межфазной границы отличается от его состояния внутри фазы. Любая молекула, которая находится вблизи межфазной поверхности, взаимодействует как со своими соседями в той же фазе, так и с молекулами, образующими другую фазу. Поскольку величина межмолекулярных сил зависит от вида молекул и от расстояния между ними, в общем случае силы, с которыми молекула притягивается к каждой из двух фаз, отличаются друг от друга. Например, в простейшем случае однокомпонентной системы жидкость/газ молекулы, которые находятся вблизи поверхности, в конечном итоге притягиваются к жидкости, так как притяжение к газовой фазе, имеющей малую плотность, пренебрежимо мало. [c.75]

    С конца 1960-х годов ситуация стала изменяться. Тонкий органический синтез постепенно, но неуклонно становился все более каталитическим в полном смысле этого слова. Он стал осушествлять-ся на поверхности раздела фаз жидкость/жидкость, жидкость/твердая фаза и жидкость/иммобилизованный катализатор межфазного переноса/жидкость. Межфазный катализ (МФК) оказался одним из наиболее простых и экономичных путей интенсификации производства широкого круга органических продуктов. Он исключил дорогостоящие растворители (спирты, эфиры, диоксан и т. д.) и взрыва- и пожароопасные реагенты, оказался нетребовательным к аппаратному оформлению процессов, позволил перейти к проточным системам непрерывного производства, а главное — резко увеличил скорость и селективность реакций. [c.247]

    Основные исследования коэффициентов массопередачи в системе жидкость—жидкость многими учеными сначала проводились в так называемых диффузионных ячейках [12, 27, 77], где точно определена межфазная поверхность процесса и относительная скорость движения обеих фаз. На рпс. 1-13 представлен такой аппарат Левп [42]. Поверхность раздела фаз имеет форму кольца и расположена между перегородками 9 и 10. У каждой мешалки свой привод, поэтому можно регулировать турбулентность в обеих фазах. Массообмен может осуществляться в неустановившемся, периодическом процессе или, в случае течения двух фаз, в непрерывном процессе. [c.326]

    Механическое перемешивание в системах жидкость—газ обычно осуществляется при проведении процессов, скорость которых лимитирована массообменом в сплошной фазе, т. е. при абсорбции т руд-норастворимых газов. В этом случае основное сопротивление массопередаче оказывается в сплошной фазе. При чисто физической абсорбции мешалки обычно не используются. Чаще их применяют для систем, в которых абсорбция сопровождается химической реакцией. Вероятно, это обусловлено малой растворимостью газа в жидкости, а при химической реакции растворимость газа возрастает в несколько раз. Типичные случаи перемешивания систем жидкость—газ — это процессы гидрирования, хлорирования, ферментации, биологической очистки воды и т. п. Необходимо отметить, что для многих химических реакций с малыми скоростями требуется длительное время контакта (пребывания), что легко может быть осуществлено в аппарате с мешалкой. Перемешивание дает возможность создания большой межфазной поверхности. Это вызывает значительное повышение коэффициентов массопередачи, рассчитанных на единицу объема, [c.328]

    Недостатки такой модели легко видны, даже если принять положение об обновлении поверхности, особенно при отсутствии поверхностного сопротивления. В этом случае можно принять, что на границе раздела фаз существует равновесие концентраций- и всех сил, действующих на поверхности раздела фаз, а также постоянство температуры. Одна из упомянутых сил, а именно межфазное натяжение, в определенной степени характеризует межфазную границу. Если на поверхностное натяжение влияет процесс массопередачи, равновесие сил будет нарушено и в результате возникает движение на межфазной поверхности. Такое движение, называедюе далее спонтанной межфазной конвекцией, передается к прилегающим слоям, что в свою очередь оказывает влияние на скорость массопередачи. В этом случае число Рейнольдса в фазе не определяет пщродинами-ческих условий в слоях, прилегающих к поверхности. Соответственно нарушается корреляция, выражаемая уравнением (1). Это утверждение справедливо по отношению к большинству зависимостей, предложенных для экстракции в системе жидкость — жидкость. Обычно такие корреляции оправдываются только в узком интервале изменяемых параметров п зависят не только от размера и типа аппарата, но также и от системы. [c.205]

    Наблюдение Льюиса и Пратта стимулировало дальнейшие исследования главным образом потому, что оно было сделано ири изучении массопередачи при экстракции в системе жидкость — жидкость. Было показано, что подобные явления могут существенно влиять на скорость массопередачи в любых процессах, где имеется свободная межфазная поверхность. С этих пор исследование их природы, условий возникновения и влияния на массопередачу стало первостепенно важныл . [c.207]

    При определенных условиях, в системах жидкость — жидкость, даже в состоянии покоя, может возникнуть спонтанная межфазная оивокция достаточной интенсивности, приводящая в слоях в непо- родственной близости к поверхности ра.здела фаз к состоянию, напо-зшпающему турбулентность и, таким образом, обладающему некоторыми чертами свойственными межфазным явлениям, связанным с вынужденной конвекцией. [c.209]

    Позднее Линде использовал споры грибка (ustilago zeal) для Того, чтобы сделать потоки видимыми при боковом просмотре [39]. Циркуляционные, четко ограниченные ячейки были ясно видны в системе жидкость — газ, например при десорбции этанола в воздух из 40%-ной смеси этанол — вода (при десорбции массоперенос всегда происходит из фазы с более высокой вязкостью и меньшим коэффициентом диффузии), а также в системе жидкость — жидкость (фото 6.6). Разница в кривизне поверхности раздела фаз указывает на наличие градиента межфазного натяжения. [c.232]

    Следуя обобщению Абрамзона и Когана [38], реакция почти полностью протекает в водной фазе, если в реакции в системе жидкость — жидкость принимают участие ионные и неионные реагенты. На этом основании Мансури и Мадден приняли, что процесс восстановления происходит в водной фазе. Затем они предложили две возможные модели для объяснения своих результатов. Одна из них включает массопередачу, сопровождаемую быстрой реакцией псевдопервого порядка, согласно другой,— процесс определяется массопередачей. Последняя кажется более вероятной. С другой стороны было выведено уравнение скорости процесса, отражающее прямую пропорциональную зависимость между скоростью восстановления и поверхностью контакта фаз. Затем они предложили использовать этот метод для измерения поверхности контакта фаз, однако это предложение весьма сомнительно. Прямая пропорциональность между скоростью восстановления и межфазной поверхностью требует, чтобы коэффициент массопередачи был постоянным. Сложная зависимость коэффициента от межфазных явлений и вза- [c.373]

    Удельная площадь межфазной поверхности полидисперсной системы газовых пузырей определяется свойствами жидкости и газа, их скоростями и практически не зависит от вида газораспределителя. Влияние конструкции барботера на газосодержание и на удельную площадь поверхности контакта фаз проявляется только при малых высотах барботажного слоя, например на ситчатых тарелках массообменных аппаратов, где высота расщиряющейся струи газа соизмерима с общей высотой газо-жидкостного слоя. [c.515]

    Для того чтобы исключить взаимное вяияние изменений коэффициентов массопереноса и характеристик межфазной поверхности,исследования массопереноса обычно проводятся в специальной установке, в которой хорошо контролируется форма межфазной поверхности. Для этой цели Льюисом, Остином, Прохазкой, Нитшем и другими были разработаны специальные экспериментальные ячейки, предназначенные для исследований массопереноса в первую очередь в системах жидкость — жвдкость. Но они не очень пригодны для исследования процесса дистилляции и поэтому для его изучений используются специальные ректификационные колонки, предотавлявщие собой каскады горизонтальных контакторов с противотоком [ б, 19]. Полученные результаты указывают на то, что производительность тарелки почти в полтора раза выше для положительных систем, чем для отрицательных. [c.203]


Смотреть страницы где упоминается термин Поверхность межфазная в системах газ—жидкость: [c.12]    [c.289]    [c.83]    [c.611]    [c.19]    [c.108]   
Перемешивание в химической промышленности (1963) -- [ c.63 ]




ПОИСК





Смотрите так же термины и статьи:

Межфазные

Межфазные поверхность

Системы газ жидкость

Системы жидкость жидкость



© 2024 chem21.info Реклама на сайте