Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

также Дыхание, Фотосинтез

    Реакции, протекающие с изменением степени окисления атомов, входящих в состав реагирующих молекул, называются окислительно-восстановительными. Окислительно-восстановительные реакции принадлежат к числу наиболее распространенных химических реакций. Дыхание, фотосинтез, обмен веществ и ряд биологических процессов в основе своей являются окислительно-восстановительными реакциями. В технике значение окислительновосстановительных реакций также велико. Так, вся металлургическая промышленность основана на окислительно-восстановительных процессах, в ходе которых металлы выделяются из природных соединений. [c.319]


    Из результатов исследований по изучению различных микроэлементов в связи с основными процессами и функциями растения можно сделать вывод об абсолютной необходимости этой группы химических элементов для жизнедеятельности растений. Эти данные свидетельствуют также, что изучения изменений в ходе общих, интегральных показателей метаболизма клетки (интенсивности дыхания, фотосинтеза, содержания белка, хлорофилла, а также активности ферментов), возникающих в отсутствие или под влиянием того или иного микроэлемента, недостаточно для более или менее исчерпывающего ответа на вопрос [c.20]

    К настоящему времени накоплено большое количество данных по влиянию меди на дыхание, фотосинтез, азотный обмен, синтез хлорофилла. Имеются материалы по действию меди на рост, содержание и состояние этого элемента в растениях, по влиянию его на интенсивность дыхательного газообмена и активность медьсодержащих ферментов (Островская, 1961). Очевидно, для понимания физиологической роли микроэлемента недостаточно сведений об активности ферментов с тем или иным металлом в активном центре, а также данных о влиянии элемента на величину показателей, характеризующих обмен. Для расшифровки роли меди, как и любого другого элемента, необходимо познать механизм участия меди и ферментных систем, ее содержащих, в биохимических процессах. [c.147]

    Цитохромы группы с представлены компонентами а, я Роль каждого из них в процессе дыхания, а также в фотосинтезе сейчас широко обсуждается. В литературе имеется достаточно данных для того, чтобы говорить об участии в дыхании растений цитохромоксидазы (цит. Яз). [c.193]

    Еще одно несоответствие возникает в связи с явлением разобщения, столь важным в биохимии. Некоторые вещества, особенно динитрофенол, ингибируют окислительное фосфорилирование и в то же время увеличивают поглощение кислорода и образование СОг. В рамках принятой здесь терминологии можно сказать, что такие разобщители усиливают дыхание. Разобщение известно также в фотосинтезе, но связанные с ним трудности там менее заметны. [c.136]

    Функции зеленого растения — рост, дыхание, фотосинтез, поглощение и выделение веществ, размножение — обусловливаются процессами, происходящими в клетках. Органы растений состоят из клеток, форма, величина и функции которых очень, разнообразны и зависят от взаимосвязей с другими клетками организма, фазы их развития, а также от вида организма, В природе нет какой-то типичной клетки. Все они различаются строением и функциями. [c.31]


    К подобным эндогенным ритмам относятся также ритмы фотосинтеза и дыхания, транспорта веществ, транспирации, открывания и закрывания цветков и т. д. Околосуточные ритмы тесно связаны с суточными колебаниями освещенности, температуры и других факторов среды, причем сложившаяся периодичность физиологических процессов некоторое время сохраняется у растений и при изменении условий среды, вследствие чего эти ритмы названы эндогенными. Благодаря эндогенным ритмам живые организмы хорошо приспособлены к тем условиям, в которых они обитают, мало завися от случайных погодных флуктуаций. [c.353]

    Однако сам факт, что ферменты дыхания, фотосинтеза, а также определенные АТФ-синтетазы играют роль генераторов тока, еще ничего не может сказать о механизме их действия. А ведь тут есть чему удивиться и над чем задуматься. По существу, перед нами действительно миниатюрные электростанции молекулярных размеров. Толщина мембраны, куда встроен белок-генератор, около 70 ангстрем, или 7 миллионных долей миллиметра. В мембрану вмонтирована молекула белка, причем сделано это таким образо , что противоположные концы белковой молекулы выходят на поверхность мембраны с двух разных сторон. Например, протонная АТФ-синтетаза состоит из двух частей грибовидного выроста, который смотрит в воду внутрь митохондрий, и цилиндра, пронизывающего толщу мембраны. Основание цилиндра прикреплено к грибовидному выросту, а его верхняя часть вынесена на другую, сторону мембраны, то есть в воду, находящуюся снаружи митохондрий. [c.104]

    Гуминовые кислоты как окислительно-восстановительная система близки йо свойствам веществам, определяющим протекание процессов дыхания и фотосинтеза в растительной клетке. Они также проявляют ярко выраженную биологическую активность. Под биологической активностью понимают способность вещества усиливать процессы вегетации (роста) растений. [c.24]

    Хотя процессы горения, дыхания и гниения происходят беспрерывно, содержание кислорода в воздухе не уменьшается, так как в листьях зеленых растений на солнечном свету происходит фотосинтез, при котором выделяется кислород (воздух пополняется кислородом также за счет разложения воды под действием космических лучей в стратосфере). [c.379]

    К концу Кембрия в водах океана существовало уже, как полагают, до 1200 видов примитивных живых существ и происходило бурное развитие анаэробного брожения, а также началось поедание одних живых существ другими (вследствие уменьшения запасов органического вещества, абиогенно фотосинтезированного солнечными лучами) замечательную роль в биохимии начал играть фосфор и, в частности, аденозинтрифосфат, необходимый как для дыхания, так и для фотосинтеза органических молекул [c.378]

    Наличие О2 в А. обеспечивает возможность существования высших форм жизни на Земле. Выведение О2 из А. при дыхании живых организмов, а также его расходование при сжигании топлива, выплавке металлов и т.п. компенсируется фотосинтезом зеленых растений. [c.212]

    Кроме того, живой лес играет большую роль в обмене газов с атмосферой. Основные газы атмосферы О2 и СО2 вовлечены в процессы дыхания и фотосинтеза. Однако лесами выделяются также огромные количества следовых органических соединений. Такие терпены, как пинен и лимонен, придают лесам их чудесный аромат. Леса являются также источниками органических кислот, альдегидов и других органических соединений (вставка 2.7). [c.41]

    Океаны. Как и биосфера суши, океаны также каждый год обмениваются большими количествами СО2 с атмосферой. В незагрязненной среде потоки воздух-море и море-воздух в целом сбалансированы, и в обоих направлениях каждый год перемещается около 90 ГтС. Такие потоки вверх и вниз управляются изменениями в температуре поверхностного слоя воды в океанах, которая влияет на способность воды растворять СО2, а также потреблением и продукцией газа в процессах фотосинтеза и дыхания/разложения в околоповерхностных водах. Все эти процессы могут в значительной степени варьировать как по сезонам, так и в пространстве. В целом тропические океаны являются суммарными источниками СО2 в атмосферу, тогда как в более высоких и особенно полярных широтах океаны являются суммарным стоком. [c.222]

    Радикальные реакции распространены очень широко и -имеют чрезвычайно большое значение. Большинство реакций, инициируемых светом, включая фотосинтез, являются радикальными. Взрывы, горение, большая часть процессов галогенирования, многие реакции полимеризации и большинство реакций пиролиза также являются радикальными. Много реакций с участием кислорода, в том числе дыхание, имеют радикальный механизм. [c.9]

    Производные пиридина встречаются в природе, и о некоторых из них пойдет речь в т. 2, разд. 17.5 и 17.7. Мы, однако, можем сразу же отметить тот факт, что очень важный биохимический окислительно-восстановительный процесс включает четвертичную соль амида никотиновой кислоты (никоти-намид, витамин РР). Биохимики называют это сложное соединение НАД (со-кращенпе от дкотиндмидаденинЗинуклеотид), и оно, вместе с подобным ему веществом Н А ДФ, играет значительную роль в процессах клеточного дыхания, фотосинтеза, синтеза карбоновых кислот с длинной углеродной цепью ( жирных кислот ), а также в процессе зрения. Ниже представлена схема процесса превращения НАД в его восстановленную форму. Заметьте, что окислительно- [c.635]


    Присутствие в природных водах растворенного углекислого газа связано прежде всего с процессами распада органического вещества при его окислении, брожении или гниении. Источниками растворенного СОз являются также дыхание водных организмов и выделение СОг в геохимических процессах. Поглощение СОз из атмосферы играет меньшую роль, так как в ней содержится всего 0,03%" СОз (рсо, = 0,0003 атл<). В соответствии с этим по закону Генри растворимость СОз в воде при 10" должна составлять Ссо, =2310-0,0003=0,69 мг/л. Фактическое содержание СОз в природных водах изменяется в широких пределах— от десятых долей до нескольких сотен мг/л. Из процессов, направленных на уменьшение содержания СОз в природных водах, важнейшими являются удаление его в атмосферу из-за пересыщенности им воды, расходование на растворение карбонатных пород, потребление зеленой растительностью в процессе фотосинтеза. [c.35]

    Миллер и Барр обнаружили довольно неожиданное явление, установив, что углекислотный компенсационный пункт не зависит от температуры. Световой компенсационный пункт, напротив, сильно от нее зависит (см. гл. XXVIII). Это различие объясняется тем, что температура заметно влияет на дыхание, а также на фотосинтез при сильном освещении и оказывает лишь слабое влияние (или совсем никакого) на фотосинтез при малых интенсивностях света (см. гл. XXIX и XXX). При измерении светового компенсационного пункта фотосинтез находится в состоянии светового ограничения и потому не зависит от температуры, тогда как при измерении углекислотного компенсационного пункта он находится в состоянии ограничения двуокисью угт е-рода и потому зависит от температуры. Однако точное совпадение температурных коэффициентов дыхания и фотосинтеза, вытекающее из данных Миллера и Барра, является, вероятно, не более, чем случайностью. [c.315]

    Для того чтобы нормально происходили процессы дыхания, фотосинтеза, поступления и превращения элементов питания в корневой системе, в почве должно быть достаточное количество кислорода. При содержании в почвенном воздухе менее 8—12% кислорода большинство растений испытывает угнетение, а ниже 5% — Гйбнет. Губительное действие на растения оказывает также высокая концентрация в почвенном воздухе углекислого газа. Наиболее хорошие условия для выращивания растений создаются при наличии в почвенном воздухе около 1% СОг. [c.16]

    Брожение и минерализация органических веществ, а также дыхание наземных и водных растительных организмов дают около. 56% поступающего в атмосферу СОг, жизнедеятельность почвенных микроорганизмов — около 38%, а дьиание животных и людей — всего 1,6%. Промьш1леш1ые выбросы СОг в атмооф >у составляют 5 10 т в год, из них 50% остается в атмосфере, а остальная часть попадает в процессе фотосинтеза в биосферу и поглощается гидросферой. [c.526]

    Грин и др. (Green, M arthy а. King, 1939) обнаружили, что многие ингибиторы (тиомочевина, салицилальдоксим, диэтилди-тиокарбамат натрия), инактивирующие медные энзимы, угнетают также дыхание и особенно фотосинтез хлореллы. [c.174]

    Несмотря на то что кислород является одним из продуктов процесса фотосинтеза, в условиях полного анаэробиоза процесс фотосинтеза останавливается. Можно полагать, что влияиие анаэробиоза косвенное, связано с торможением процесса дыхания и пакоплениеи продуктов неполного окисления, в частности органических кислот. Это предположение подтверждается тем, что вредное влияние анаэробиоза сказывается более резко в кислой среде. Повышение концентрации кислорода (до 25%) также тормозит фотосинтез (эффект Варбурга). [c.146]

    Иные представления о фотосинтезе развивает Варбург 2. По его мнению, фотосинтез состоит из световой и темновой реакций в первой из них каждая молекула хлорофилла образует одну молекулу кислорода, при темновой же реакции две трети образовавшегося на свету кислорода вступают в обратную реакцию, причем вновь регенерируются исходные вещества. Таким образом, фотосинтез связан с дыханием. По Варбургу, углекислота фиксируется, по крайней мере частично, в виде а-карбоксила глутаминовой (а также аспарагиновой) кислоты, которые тем самым участвуют в связывании и восстановлении СОг. [c.984]

    Окислительно-восстановительные реакции имеют очень большое значение в биологических системах. Фотосинтез, дыхание, пищеварение — все эхо цепи окислительно-восстановительных реакций. В техвшке значение окислительновосстановительных реакций также очень велико. Так, вся металлургическая про.мышленность основана на окислительно-восстановительных процессах, в ходе которых металлы выделяются из природных соединений. [c.262]

    Фотосинтез является непременным условием жизни растений и животных, будучи фактически самым крупномасштабным синтетическим процессом на Земле. Как считает П. Нобел, за год фотосинтезирующими организмами фиксируется и переводится в форму органических соединений около 5-10 г (50 млрд. т) углерода, причем большая часть его фиксируется фитопланктоном, живущим вблизи поверхности океанов. Это количество соответствует параллелепипеду, сложенному из фотосинтетиче-ских продуктов, с основанием 1 км и высотой несколько более 100 км. Источником углерода для фотосинтеза служит атмосферный СО2 (содержание в атмосфере составляет 0,03%), а также СО2 и НСОз растворенные в воде озер и океанов. Из продуктов фотосинтеза, кроме органических соединений, очень важное значение имеет кислород, необходимый для всех организмов, обладающих дыханием. Весь кислород, содержащийся в атмосфере, был образован путем фотосинтеза за несколько тысячелетий. [c.161]

    Медь является микроэлементом. В организмах растений она стимулирует фотосинтез и дыхание, а также углеводный обмен. Недостаток меди в почве вызывает заболевания растений особенно бедны медью и нуждаются в микроудобрениях торфяные и болотные почвы. При этом мнкроудобрениями служат отходы от переработки медьсодержащих руд, а также соли меди. [c.437]

    Особенно удивительным следует считать то, что передача аденозинтри-фосфатом свободной (способной произвести химическую работу) энергии оказывается возможной не для протекания вполне определенных специальных (специфически обусловленных набором случайностей) химических реакций, а совершается как-то универсально АТФ является действенным источником свободной энергии для очень большого набора разнообразных химических процессов, делая осуществимыми многие самые трудные и важные для жизни химические превращения к этому списку реакций можно причислить и процессы дыхания, и фотосинтез, и сокращение мышц, и синтез белков, а также нуклеиновых кислот с их наследственной информацией и т. п. [c.330]

    Как и при дыхании, СОа нельзя считать продуктом, получаемым при использовании вдыхаемого Ог (т. е. по реакции С + О СОг). Молекула СО2 представляет группу атомов, выделяемых из карбоксильных радикалов пищевого субстрата после отнятия от него атомов водорода и сжигания их до воды (4Н + Оа 2НгО). Также и при фотосинтезе СОг не разлагается на С и Ог, а целиком прямо внедряется в довольно сложные органические молекулы, превращая их в конечном итоге в углеводы. Кислород выделяется при этом из воды, отдающей свой водород для восстановительного процесса при образовании углеводов. [c.341]

    Несмотря на такое значение фоторадиолиза воды и биокаталитического ее образования при дыхании из свободного кислорода и атомов водорода, отнимаемых от молекул пищевых веществ при содействии дегидрогеназ, наука наша имеет пока все еще далеко не полные сведения о сложнейших тайнах протекания процессов фотосинтеза углеводов, белков и жиров, а также процессов дыхания. [c.350]

    Р. с. широко распространены в природе. Они открыты на Солнце, звездах и кометах, в межзвездном пространстве с их участием осуществляются дыхание и фотосинтез, а также многие пром. процессы (горение, крекинг, полимеризация). См., напр., Иминоксильные радикалы, Арок-сильные радикалы, Вердазильные радикалы, Триарилметильные радикалы. [c.490]

    Координирующая роль мембран состоит в том, что многие ферменты активны только в связанном с мембранами состоянии (мембраны создают своеобразный биологический конвейер ). Поэтому, важна также векторная роль мембран в действии ферментов. Примерами могут быть процессы фотосинтеза трансформация энергии и биосинтез органических веществ протекает на мембранах как высокоорганизованный процесс дыхание и окислительное фосфолирование в мембранах митохондрий, а также всасывание и переваривание пищи, возникновение и передача импульсов в нервной системе, работа органов чувств, работа сердца, сокращение мышц. [c.108]

    Растения способны синтезировать очень широкую гамму фенольных соединений. С участием промежуточных продуктов шикиматного пути биосинтеза лигнина (см. 12.5.1) происходит образование фенолкарбоновых кислот, простых фенолов, фенольных альдегидов и спиртов, хинонов, нафтохинонов, антрахинонов, лигнанов, ку-маринов, ароматических аминокислот (рис. 14.5). Образуются также бензольные кольца терпеновых хинонов (убихинонов, пластохинонов, филлохинона) и хроманолов (токоферолов), участвующих в процессах фотосинтеза и дыхания. [c.520]

    Исследование процессов метаболизма также началось на рубеже XIX в. На основе открытого М. В. Ломоносовым закона сохранения материи и накопившихся к концу XVIII в. экспериментальных данных французский ученый А. Лавуазье количественно исследовал и объяснил сущность дыхания, отметив роль кислорода в этом процессе. Работы Лавуазье стимулировали исследования по энергетике метаболизма и уже в начале XIX в. были определены количества теплоты при сгорании 1 г жиров, белков и углеводов. Примерно в это же время работами Дж. Пристли и Я. Ингенхуза был открыт процесс фотосинтеза. Из живых объектов К. Шееле вьщелил рад органических кислот, Д. Руэлль — мочевину, Ф. Конради — холестерин. [c.5]

    Для испытания токсичности сточных вод и растворимых в воде веществ, токсичных для водорослей, можно использовать манометрический метод с применением аппарата Варбурга. Манометрический метод является классическим в определении газообмена микроорганизмов и щироко применяется для изучения выделения и поглощения кислорода в процессах фотосинтеза и дыхания (Умбрейт и др., 1951 Вознесенский и др., 1965 Семихатова, Чулановская, 1965). Этот метод очень чувствительный позволяет обнаружить даже небольшие изменения количества выделенного или поглощенного кислорода при относительно высоком содержании его в атмосфере, что может служить весьма показательной характеристикой угнетающего или стимулирующего действия токсических веществ. Применение манометрического метода в токсикологических экспериментах обусловлено также и тем, что он очень удобен для изучения фотосинтеза и дыхания водорослей и других микроорганизмов от разных экспериментальных воздействий и внешних факторов. [c.229]


Смотреть страницы где упоминается термин также Дыхание, Фотосинтез: [c.331]    [c.46]    [c.127]    [c.223]    [c.317]    [c.227]    [c.227]    [c.50]    [c.69]    [c.315]    [c.371]    [c.104]   
Загрязнение воздушной среды (1979) -- [ c.0 ]

Загрязнение воздушной среды (копия) (1979) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Фотосинтез



© 2025 chem21.info Реклама на сайте