Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

также в метаболизме углеводов

    В здоровом организме взрослого человека наблюдается состояние водного равновесия или водного баланса. Оно заключается в том, что количество воды, потребляемое человеком, равно количеству воды, выводимой из организма. Водный обмен является важной составной частью общего обмена веществ живых организмов, в том числе и человека. Водный обмен включает процессы всасывания воды, которая поступает в желудок при питье и с пищевыми продуктами, распределение ее в организме, выделения через почки, мочевыводящие пути, легкие, кожу и кишечник. Следует отметить, что вода также образуется в организме вследствие окисления жиров, углеводов и белков, принятых с пищей. Такую воду называют метаболической. Слово метаболизм происходит от греческого, что означает перемена, превращение. В медицине и биологической науке метаболизмом называют процессы превращения веществ и энергии, лежащие в основе жизнедеятельности организмов. Белки, жиры и углеводы окисляются в организме с образованием воды НгО и углекислого газа (диоксида углерода) СОг. При окислении 100 г жиров образуется 107 г воды, а при окислении 100 г углеводов — 55,5 г воды. Некоторые организмы обходятся лишь метаболической водой и не потребляют ее извне. Примером является ковровая моль. Не нуждаются в воде в природных условиях тушканчики, которые водятся в Европе и Азии, и американская кенгуровая крыса. Многие знают, что в условиях исключительно жаркого и сухого климата верблюд обладает феноменальной способностью долгое время обходиться без пищи и воды. Например, при массе 450 кг за восьмидневный переход по пустыне верблюд может потерять 100 кг в массе, а потом восстановить их без последствий для организма. Установлено, что его организм использует воду, содержащуюся в жидкостях тканей и связок, а не крови, как это происхо- [c.8]


    Особую роль в регуляции метаболизма липидов играют гормоны. Следует обратить внимание на то, что жировой обмен регулируется практически теми же гормонами, что и обмен углеводов — адреналин и норадреналин, глюкагон, глюкокортикоиды, гормоны передней доли гипофиза (соматотропный гормон и АКТГ), а также тироксин и половые гормоны. Адреналин и норадреналин активируют липолиз в жировой ткани, в результате усиливается мобилизация жирных кислот из жировых депо и содержание неэстерифицированных жирных кислот в плазме повышается. Клк уже отмечалось (гл. 23.3), эти гормоны через цАМФ активируют соответствующую протеинкиназу, которая способствует фосфорилированию липазы, т. е. образованию ее активной формы. [c.356]

    Для завершения окисления жирных кислот ацетильные остатки молекулы ацетил-СоА, образовавшиеся в результате реакций р-окисления, должны быть окислены до двуокиси углерода и воды [14]. Цикл трикарбоновых кислот, в ходе которого осуществляется это окисление, является жизненно важной частью метаболизма почти всех аэробных организмов. Центральное место этого цикла в метаболизме обусловлено еще и тем, что ацетил-СоА образуется также в процессах катаболизма углеводов и некоторых аминокислот. [c.317]

    Печень участвует также в метаболизме аминокислот, поступающих время от времени из периферических тканей. Спустя несколько часов после каждого приема пищи из мышц в печень поступает аланин в печени он подвергается дезаминированию, а образующийся пируват в результате глюконеогенеза превращается в глюкозу крови (разд. 19.12). Глюкоза возвращается в скелетные мышцы для восполнения в них запасов гликогена. Одна из функций этого циклического процесса, называемого циклом глюкоза-аланин, состоит в том, что он смягчает колебания уровня глюкозы в крови в период между приемами пищи. Сразу после переваривания и всасывания углеводов пищи, а также после превращения части гликогена печени в глюкозу в кровь поступает достаточное количество глюкозы. Но в период, предшествующий очередному приему пищи, происходит частичный распад мышечных белков до аминокислот, которые путем переаминирования передают свои аминогруппы на продукт гликолиза пируват с образованием аланина. Таким образом, в виде аланина в печень доставляется и пируват, и КНз. В печени аланин подвергается дезаминированию, образующийся пируват превращается в глюкозу, поступающую в кровь, а КНз включается в состав мочевины и выводится из организма. Возникший в мышцах дефицит аминокислот в дальнейшем после еды восполняется за счет всасываемых аминокислот пищи. [c.754]


    Поскольку у большинства сахаров при каждом из атомов углерода имеется атом кислорода, химическая атака, приводящая к окислению, оказывается возможной в любой точке молекулы. Каждый сахар содержит потенциально свободную альдегидную или кетонную группу, и карбонильная группа может быть легко перемещена в соседнее положение с помощью изомераз. Альдольное расщепление также оказывается возможным во многих точках. По этим причинам метаболизм углеводов сложен и разнообразен. Однако в энергетике большинства организмов, в том числе и человека, гликолитический ) путь, с помощью [c.335]

    Развитие гипергликемии при диабете можно рассматривать также как результат возбуждения метаболических центров в ЦНС импульсами с хеморецепторов клеток, испытывающих энергетический голод в связи с недостаточным поступлением глюкозы в клетки ряда тканей. Роль системы фруктозо-2,6-бисфосфата в регуляции метаболизма углеводов, а также нарушения ее функционирования при сахарном диабете см. главу 16. [c.360]

    Как и все прокариоты, Е. соИ имеет клеточную стенку, к которой с внутренней стороны примыкает клеточная мембрана. Кроме большой двухцепочечной ДНК, локализованной в нуклеоиде, Е. соН, подобно другим прокариотам, содержит несколько мелких кольцевых ДНК, которые называются плазмидами. Бактерии способны передвигаться в водной среде при помощи мембранных структур, называемых жгутиками. Важнейшая роль цитоплазматической мембраны заключается в избирательном транспорте питательных веществ в клетку и продуктов метаболизма из клетки. В цитоплазме Е. соИ локализованы рибосомы, секреторные гранулы, а также запасники питательных веществ — жиров или углеводов. Для прокариотических клеток характерно образование нитевидных ассоциатов, которые в определенных условиях могут диссоциировать на отдельные клетки. [c.12]

    Биотехнологические процессы в связи с особенностями метаболизма клеток Процессы в биохимической технологии в большинстве своем базируются на использовании продуктов вторичного метаболизма Даже в тех случаях, когда преследуют цель промышленного производства биомасс i клеток или тканей, оптимизация условий ее выращивания также основывается на знаниях особенностей метаболизма тест-культур Эффективность накопления такой биомассы по-прежнему оценивается экономическим коэффициентом (ЭК), то есть отношением веса сухой массы клеток (ткани)-У к весу потребленного углевода (Сп) Величину экономического коэффициента выражают в процентах, и она, как правило, обратно пропорциональна концентрации сахара ЭК%=У/Сп 100 [c.269]

    Некоторые четвертичные аммониевые соли физиологически активны. Например, холин — составная часть лецитинов (рис. 7.8), входящих в состав ткани головного и спинного мозга. Холин необходим для роста, участвует в транспорте жиров и в метаболизме углеводов и белков. Он также является предшественником ацетилхолина (рис. 7.8), который участвует в передаче нервных импульсов к клеткам нервных узлов и мускульным волокнам. [c.150]

    Известно, например, что антибиотические вещества, как правило, не являются прямыми и главными продуктами метаболизма углеводов, а также продуктами непосредственного восстановления или окисления веществ, в значительном количестве накапливающихся в период первой фазы развития, как это наблюдается у многих организмов, способных к брожению. В ряде случаев антибиотики могут быть продуктами побочных звеньев сложнейшей цепи обмена углеродных, азотных и фосфорных соединений. [c.27]

    ЭМП и ГМФ, а также в цикл трикарбоновых кислот. Этот путь метаболизма углеводов встречается у грибов сравнительно редко. [c.66]

    Как было указано, обмен веществ в организме человека протекает не хаотично он интегрирован и тонко настроен. Все превращения органических веществ, процессы анаболизма и катаболизма тесно связаны друг с другом. В частности, процессы синтеза и распада взаимосвязаны, координированы и регулируются нейрогормональными механизмами, придающими химическим процессам нужное направление. В организме человека, как и в живой природе вообще, не существует самостоятельного обмена белков, жиров, углеводов и нуклеиновых кислот. Все превращения объединены в целостный процесс метаболизма, подчиняющийся диалектическим закономерностям взаимозависимости и взаимообусловленности, допускающий также взаимопревращения между отдельными классами органических веществ. Подобные взаимопревращения диктуются физиологическими потребностями организма, а также целесообразностью замены одних классов органических веществ другими в условиях блокирования какого-либо процесса при патологии. [c.545]

    Все физические и химические процессы, связанные с построением содержащихся в организме веществ из продуктов питания (углеводов, жиров и белков), а также с превращением таких веществ и разрушением химических соединений в организме описывают общим термином обмен веществ (метаболизм). Для веществ, которые имеют значение при обмене веществ и в процессе роста организма, обычно используют термин метаболиты. [c.698]

    Седогептулоза также представляет собой 2-кетозу, и в метаболизме углеводов она тесно связана с рибозой и рибулозой. Фермент тран ске толаза, выделенный в чистом виде из растений, может катализировать обратимые превращения, приведенные ниже на схеме, в которых фрагмент из двух атомов углерода переносится с Сг-фосфата (фосфат седогептулозы) на Сз-фосфат (фосфат глицеринового альдегида), образуя две молекулы Св-фосфатов  [c.583]


    Мы перейдем теперь от метаболизма углеводов к метаболизму жирных кислот, класса соединений, содержащих длинную углеводородную цепь и концевую карбоксильную группу. Жирные кислоты играют две важные физиологические роли. Во-первых, они служат строительными блоками фосфолипидов и гликолипидов. Эти амфипатические молекулы представляют собою важные компоненты биологических мембран (гл. 10). Во-вторых, жирные кислоты являются молекулами, выполняющими роль топлива. Они запасаются в виде триацил-г лице ролов, не несущих заряда эфиров глицерола. Триацилглицеролы называют также нейтральными жирами, или триглицеридами. [c.138]

    Во второй том вошли материалы по биоэнергетике и метаболизму клетки. Рассмотрены роль глюкозы в биоэнергетических процессах, цикл лимонной кислоты, электронный транспорт, окислительное фосфорилирование, регуляция образования АТФ, окисление жирных кислот в тканях животных, окислительный распад аминокислот, биосинтез углеводов, липидов, нуклеотидов, аминокислот, а также фотосинтез. [c.372]

    Соматотропин, или гормон роста, секретируемый передней долей гипофиза, впервые был выявлен по способности вызывать рост скелета и увеличение веса тела молодых животных. Недостаточность этого гормона приводит к карликовости (рис. 25-21). Избыточная же его секреция выражается в гигантизме или акромегалии, при которой происходит усиленный рост кистей рук, ступней и особенно лицевых костей, приводящий к развитию массивной нижней челюсти и тяжелых надбровий. Соматотропин оказывает также глубокое воздействие на метаболизм углеводов. Введение животным избытка соматотропина вызывает гипофизарный диабет, обусловленный тем, что соматотропин тормозит секрецию инсу- [c.801]

    К 30-м годам XX столетия, когда было установлено, что процессы метаболизма углеводов протекают преимущественно через фосфорнокислые эфиры, стало складываться мнение, что фосфорнлирование активирует молекулу моносахарида. Однако, в чем конкретно заключается активирование, было не ясно. Сейчас также нет полного объяснения значения фосфорилирования, но ряд фактов уже известен. [c.181]

    Как и в отношении фосфатов сахаров, при изучении НДФС возникает вопрос, что определяет их роль в метаболизме углеводов. По-видимому, здесь также нужно иметь в виду энергетические и структурно-химические факторы. [c.191]

    При комнатной температуре глицерин представляет собой сладкую вязкую жидкость, смешивающуюся с водой и спиртом, но нерастворимую в эфире. Он образует эфиры как с неорганическими, так и с органическими кислотами, и один из его фосфорных эфиров, ь-глпцеро-З-фосфат, является компонентом фосфоглице-ридов, а также важным промежуточным продуктом метаболизма углеводов (гл. 14) и липидов (гл. 17). [c.65]

    Биологическая роль кофермента А связана с важными реакциями, протекающими в животных и растительных тканях — реакциями трансацилирования. К настоящему времени известно около 70 ферментативных реакций с участием кофермента А в метаболизме углеводов, белков и липидов, а также в процессах тканевого дыхания, брожения, водного [c.239]

    Экстремальные галофилы имеют сложные пищевые потребности. Для роста большинства видов в состав сред должны входить дрожжевой экстракт, пептон, гидролизат казеина, набор витаминов. Высокой требовательностью к среде отличаются представители родов Haloba terium и Halo o us. Основным источником энергии и углерода служат аминокислоты и углеводы. Метаболизм глюкозы осуществляется по модифицированному пути Энтнера—Дудорова, отличающемуся тем, что глюкоза без фосфорилирования окисляется в глюконовую кислоту. Последняя превращается в 2-кето-З-дезоксиглюконовую кислоту, которая расщепляется на два Сз-фрагмента пировиноградную кислоту и глицериновый альдегид. Из глицеринового альдегида в результате нескольких ферментативных преобразований также образуется пировиноградная кислота (рис. 105). Дальнейшее ее окисление происходит в замкнутом ЦТК. [c.420]

    В промышленных сточных водах обитает бесчисленное множество микроорганизмов, среди которых преобладают бактерии. А если учесть, что очень часто для более эффективной биологической очистки промышленные стоки смешивают с бытовыми, богатыми природными органическими веществами (водорастворимыми белками и углеводами), то станет ясно, что в таких сточных водах могут развиваться почти все ныне известные гетеротрофные бактерии, а также некоторые (возможно и все) бактерии, способные к хемоавтотрофному метаболизму. Помимо истинных бактерий — эубактерий — в промышленных сточных водах находятся миксобактерии, актиномицеты, синезеленые водоросли, микоплазмы и другие микроорганизмы вирусы, грибы, зеленые водоросли и представители животного мира — простейшие. Бактериальная клетка отличается наиболее универсальным набором ферментных систем, способных охватить множество разнообразных химических реакций, часто очень полезных для народного хозяйства и необходимых для охраны окружающей среды от угрозы гибели или частичного отравления ее химическими веществами, которые накапливаются в результате промышленной деятельности. Микроорганизмы — лучшие санитары Земли Многие микроорганизмы используются в промышленности и сельском хозяйстве как продуценты спиртов, кислот, биологически активных веществ и антибиотиков. В сельском хозяйстве используются азотфиксаторы и энтомопатогенные микробы. Однако наряду с этим множество микробов не только бесполезны, но и весьма вредны, образуя токсины либо паразитируя в организме человека, животных и растений это патогенные (болезнетворные) или фитопатогенные микроорганизмы, вызывающие болезни человека, домашних животных, сельскохозяйственных растений и лесов. Большой ущерб народному хозяйству наносят и обычные сапрофитные микробы, поселяясь на пищевых продуктах, кормах, промышленных товарах, по-врелсдая их и понижая товарные качества. В роли недругов человека могут выступать представители всех перечисленных [c.8]

    Исследование процессов метаболизма также началось на рубеже XIX в. На основе открытого М. В. Ломоносовым закона сохранения материи и накопившихся к концу XVIII в. экспериментальных данных французский ученый А. Лавуазье количественно исследовал и объяснил сущность дыхания, отметив роль кислорода в этом процессе. Работы Лавуазье стимулировали исследования по энергетике метаболизма и уже в начале XIX в. были определены количества теплоты при сгорании 1 г жиров, белков и углеводов. Примерно в это же время работами Дж. Пристли и Я. Ингенхуза был открыт процесс фотосинтеза. Из живых объектов К. Шееле вьщелил рад органических кислот, Д. Руэлль — мочевину, Ф. Конради — холестерин. [c.5]

    Аминокислоты в организме прежде всего используются для синтеза белков и пептидов. Кроме этого, ряд аминокислот служат предшественниками для образования соединений непептидной природы пуриновых и пиримидиновых оснований, биогенных аминов, порфиринов (в том числе гема), никотиновой кислоты, креатина, холина, таурина, тироксина и ряда других. Из углеродного скелета гликогенных аминокислот синтезируются углеводы, кетогенных — липиды и кетоновые тела. Основным органом метаболизма аминокислот является печень, где происходят многие синтетические процессы, связанные с использованием аминокислот, а также важный процесс перераспределения избыточных количеств, потребляемых с пишей углеродных цепей аминокислот и азота. [c.369]

    Промежуточный метаболизм складывается из двух фаз-катаболизма и анаболизма. Катаболизм-это фаза, в которой происходит расщепление сложных органических молекул до более простых конечных продуктов. Углеводы, жиры и белки, поступившие извне с пищей или присутствующие в самой клетке в качестве запасных веществ, распадаются в серии последовательных реакций до таких соединений, как молочная кислота, СО 2 и аммиак. Катаболические процессы сопровождаются высвобождением свободной энергии, заключенной в сложной структуре больших органических молекул. На определенных этапах соответствующих катаболических путей значительная часть свободной энергии запасается благодаря сопряженным ферментативным реакциям в форме высокоэнергетического соединения - аденозинтрифосфата (АТР). Часть ее запасается также в богатых энергией водородных атомах кофермента никотинамид адениндинуклеотидфосфата, находящегося в [c.379]

    Из биохимических реакций, катализируемых пнридоксалевыми ферментами, первой была открыта в 1937 V. А. Е. Браунштейном и М. Г. Крицман (СССР) реакция переаминирования амииокислот ее механизм был независимо установлен в 1952—1954 гг. А. Е. Браунштейном и М. М. Шемякиным и американцем Э. Снеллом. Фосфаты пиридоксаля и пиридоксамина входят а состав более чем 50 ферментов, участвующих главным образом в процессах вмино-кислотного синтеза и метаболизма, а также в фосфорнлировании углеводов и метаболизме жирных кислот и мембранных ненасыщенных липидов. [c.677]

    Наряду с двухступенчатым путем синтеза нуклеозидфосфатов из готовых фрагментов, в организме функционирует также и одноступенчатый путь. Субстратами реакций являются 5-фосфорибозил-1-пирофосфат (ФРПФ), пуриновое основание и пурин-фосфорибозил-трансфераза. В функционировании этого пути большое значение имеют общие реакции для метаболизма пуринов, углеводов, аминокислот, реакции, ведущие к образованию в клетках пентозофосфа-тов, реакция синтеза ФРПФ из рибозо-5-фосфата (рис. 14.6). [c.425]

    Производственные стоки часто нарушают стабильность процессов, аэрации. Пиковые нагрузки от залповых выбросов высококонцентрированных стоков приводят к снижению концентрации растворенного кислорода и нарушению равновесия биологической системы. Токсичные стоки, поступающие в значительных количествах, нарушают микробиальный метаболизм, а стоки с высоким содержанием углеводов вызывают дефицит питательных веществ. Все это может привести к потере биомассы MLSS с очищенной водой и, следовательно, к снижению эффективности очистки, а также к сдвигу отношения FjM в результате этой непреднамеренной потери микроорганизмов. В п. 9.5 описаны способы оценки возможной степени очистки сточной воды. Гидравлические пиковые нагрузки, являющиеся результатом чрезмерной инфильтрации,, и попадание дождевых и грунтовых вод в канализационную систему могут оказать такое же вредное воздействие, как токсичные вещества или перегрузка по загрязнениям. Увеличение гидравлической нагрузки на вторичный отстойник даже в течение коротких промежутков времени может привести к выносу значительной части жизнеспособного активного ила, необходимого для работы системы. Может потребоваться несколько суток для восстановления требуемой концентрации ила и отношения FjM. [c.323]

    Большая часть потребленной свободной D-глюкозы в печени фосфорилируется при помощи АТР с образованием глюкозо-б-фосфата. Поглощенные в тонком кишечнике D-фруктоза, D-галактоза и D-манноза также превращаются в D-глюкозо-б-фосфат в результате ферментативного процесса, рассмотренного ранее (разд. 15.9). D-глюкозо-б-фосфат лежит, таким образом, на перекрестке всех путей превращения углеводов в печени. Метаболизм этого соединения в печени может осуществляться по пяти основным направлениям, и выбор какого-нибудь одного из них зависит от ежечасно и даже ежеминутно меняющихся спроса и предложения (рис. 24-9). [c.752]

    Некоторые микроорганизмы, образующие при брожении кислоты, объединяют в одну физиологическую группу на том основании, что характерным, хотя и не главным продуктом брожения является у них муравь иная кислота. Наряду с муравьиной кислотой такие бактерии вьщеляют и некоторые другие кислоты такой тип метаболизма называют поэтому муравьинокислым брожением или брожением смешанного типа. Так как некоторые типичные представители этой группы обитают в кишечнике, все семейство носит название Enteroba teria eae. Это грам-отрицательные, активно подвижные, не образующие спор палочки с перитрихальным жгутикованием. Будучи факультативными аэробами, они обладают гемопротеинами (цитохромами и каталазой) и способны получать энергию как в процессе дыхания (в аэробных условиях), так и в процессе брожения (в анаэробных условиях). В отнощении питания эти бактерии исключительно нетребовательны-растут на простых синтетических средах, содержащих минеральные соли, углеводы и аммоний. Сбраживание глюкозы у всех представителей этой группы происходит с образованием кислот. Значение Enteroba teria eae для эпидемиологии, а также для разного рода экспериментальных исследований общеизвестно поэтому полезно будет рассмотреть здесь некоторых представителей этого семейства. [c.283]

    Организм может использовать энергию образовавшейся молекулы АТФ для восстановления окисленной молекулы, например фосфоглицериновой кислоты до молекулы, находящейся на уровне окисления углевода, например фосфоглицеральдегида. Обе эти молекулы — промежуточные соединения, образующиеся по ходу метаболизма при анаэробном окислении глюкозы в пировиноградную кислоту. Восстановителем служит восстановленный никотинамид, который также, как мы видели ранее, участвует в схеме анаэробного окисления глюкозы. [c.38]

    АЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ (алифатические соединения, соединения жирного ряда) — органические соединения, л которых атомы углерода соединены между собой в нрям1.1е или разветвленные цепи., Ациклические уг.певод(5роды в большом количестве содержатся в природном газе и нефти. А. с. играют очень важную роль в биологич. процессах к А. с., в частпости, относятся жиры и продукты их метаболизма, а также многие аминокислоты, входяш ие в состав белков, углеводы (сахара, крахмал, клетчатка) и др. В эфирных маслах многих растений содержатся сложные эфиры, альдегиды, спирты и др. соединения ншрного ряда. В природе обнаружены все основные классы А. с. [c.180]

    Некоторые исследования, касающиеся метаболизма, также были начаты еще в XIX и даже в XVIII в. под давлением нужд медицины и сельского хозяйства. Особого упоминания заслуживают фундаментальные исследования Антуана Лавуазье по дыханию, выполненные в период с 1779 по 1784 г. Сравнивая при помощи калориметрических методов количества тепла, выделяемые при горении и при дыхании живых клеток, Лавуазье пришел к выводу, что дыхание — это, по существу, то же горение, хотя и более медленное, но в принципе не сильно отличающееся, например, от горения древесного угля. Это открытие стимулировало исследования по энергетике метаболизма, в результате чего уже в начале XIX в. были определены количества тепла, выделяемые при сгорании одного грамма углеводов, жиров и белка. Приблизительно в то же время Теодор Шванн открыл, что процесс брожения имеет биологическое происхождение. Шванн показал, что дрожжи — это растительный организм, способный превращать сахар в спирт и СОг- Многие ведущие химики того времени (среди них Берцелиус, Вёлер и Либих) считали дрожжи неживыми и полагали, что брожение зависит исключительно от присутствия кислорода. [c.10]

    Цикл лимонной кислоты (синоним цикл трикарбоновых кислот), часто связываемый с именем Кребса это, образно говоря, та главная ось, вокруг которой вертится метаболизм почти всех суш еству1ощих клеток. Естественно поэтому, что он займет центральное место и в нашем обсуждении. Значение этого цикла, первоначально постулированного для объяснения полного сгорания пирувата (и, таким образом, углеводов), а также дву- и трехуглеродных конечных продуктов окисления жирных кислот, вышло далеко за рамки этих и им подобных чисто катаболических функций, связанных с выработкой энергии. Цикл Кребса является фокусом , в котором сходятся все метаболические пути (см. гл. XI). Поэтому его реакции и субстраты играют решаюш,ую роль в биосинтезе (анаболизме) множества важных соединений, начиная от аминокислот, пуринов и пиримидинов и кончая жирными кислотами с длинной цепью и порфиринами. [c.348]


Смотреть страницы где упоминается термин также в метаболизме углеводов: [c.216]    [c.239]    [c.85]    [c.405]    [c.414]    [c.255]    [c.320]    [c.242]    [c.232]    [c.407]    [c.142]    [c.516]    [c.521]    [c.460]    [c.652]   
Биохимия Том 3 (1980) -- [ c.335 ]




ПОИСК





Смотрите так же термины и статьи:

Метаболизм



© 2024 chem21.info Реклама на сайте