Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основы теории открытых систем

    Жидкие растворы по своей природе, свойствам, характеру взаимодействий между частицами очень разнообразны, в связи с чем трудно создать единую количественную теорию, описывающую поведение различных растворов в широкой области концентраций. Наука о растворах —одна из наиболее старых областей естествознания, в развитие которой сделан вклад многими исследователями. В ходе развития учения о растворах были высказаны две точки зрения на природу растворов —физическая и химическая. Физическая теория растворов, возникшая главным образом на основе трудов Вант-Гоффа, Аррениуса и Оствальда, опиралась на экспериментальное изучение коллигативных свойств разбавленных растворов (осмотическое давление, новышение температуры кипения, понижение температуры замерзания раствора и т. п.), зависящих главным образом от концентрации растворенного вещества, а не от его природы. Количественные законы (законы Вант-Гоффа, Рауля) были открыты в предположении, что в разбавленных растворах молекулы растворенного вещества подобны молекулам идеального газа. Отступления от этих законов, наблюдаемые для растворов электролитов, были объяснены на основе теории электролитической диссоциации Аррениуса. Простота представлений физической теории и успешное применение ее как для объяснения свойств растворов электролитов, так и для количественного изучения электрической проводимости растворов обеспечили быстрый успех этой теории. Химическая теория растворов, созданная преимущественно Менделеевым и его последователями, рассматривала процесс образования раствора как разновидность химического процесса, характеризующегося взаимодействием частиц смешивающихся компонентов. Менделеев рассматривал растворы как системы, образованные частицами растворителя, растворенного вещества и неустойчивых химических соединений, которые образуются между ними и находятся в состоянии частичной диссоциации. В классических трудах Менделеева четко сформулированы основные положения теории растворов. Менделеев указывал на необходимость использования всей суммы химических и физических сведений о свойствах частиц, [c.344]


    Общая теория процессов самоорганизации в открытых сильнонеравновесных системах развивается в нелинейной термодинамике на основе установленного Гленсдорфом и Пригожиным универсального критерия эволюции. Этот критерий является обобщением принципа минимальной скорости производства энтропии на нелинейные процессы. Ниже рассмотрен смысл этого критерия для систем как однородных, так и имеющих пространственную неоднородность. [c.354]

    Перечень достижений естествознания XX в. фундаментальной важности был бы неполным без еще одного эпохального события, которое произошло совсем недавно - в конце 70-начале 80-х годов. Речь идет о возникновении нелинейной неравновесной термодинамики, или физики открытых систем. Ее становление обязано прежде всего И.Р. Пригожи-ну, разработавшему теорию динамических состояний макроскопических систем особого типа - диссипативных самоорганизующихся структур -и теорию бифуркаций, дифференцирующую беспорядочные флуктуации на обратимые (равновесные) и необратимые (неравновесные). Они составили основу для изучения явлений, суть которых определяется неразрывной связью макроскопических свойств большого ансамбля с индивидуальными свойствами микроскопических составляющих. В открытых системах, находящихся вдали от положения равновесия, могут протекать процессы, приводящие к спонтанному возникновению порядка из хаоса. Источником самопроизвольного конструирования пространственного и пространственно-временного порядка на всех уровнях структурной организации системы является необратимость бифуркационных флуктуаций. [c.10]

    Бурный рост различных производств в начале XIX в. потребовал создания аналитических служб при фабриках. Открытие новых химических элементов, поиск источников сырья значительно стимулировали развитие аналитической химии. К этому времени относится открытие законов кратных отношений (Дж. Дальтон), объемных отношений (Ж- Гей-Люссак), разработка теории электрохимического дуализма (Й. Я. Берцелиус), на основе которой была создана затем теория электролитической диссоциации. В середине XIX в. накопились сведения о частных реакциях веществ и появились первые учебники с разработанной системой качественного и количественного анализов (Г. Розе, К. Фрезениус, Ф. Мор, [c.5]

    За последние два десятилетия естествознание сумело приблизиться к пониманию явлений спонтанного возникновения высокоупорядоченных структур во многих самых разнообразных физических, химических и биологических открытых системах. Было осознано существенное различие в природе равновесных и неравновесных процессов, выработан новый взгляд на случайность и необходимость, разработаны теория диссипативных самоорганизующихся структур и теория бифуркаций - необратимых флуктуаций, играющих конструктивную роль в возникновении порядка из хаоса. Это стало возможно благодаря созданной главным образом трудами И. Пригожина и его школы нелинейной неравновесной термодинамики. Открывшиеся новой наукой перспективы необычайно широки и многообещающи. Ее общие положения о процессах самоорганизации в открытых диссипативных системах, классических и квантовых, биологических и неорганических, легли в основу исследований во многих областях естествознания и гуманитарных наук. Становление нелинейной неравновесной термодинамики привело к качественным изменениям таких фундаментальных понятий в физике, как время и динамика. [c.88]


    Термодинамическая основа самоорганизации в открытой системе состоит в оттоке энтропии в окружающую среду. Этим определяются и онтогенез, и эволюция. Синергетика есть область физики, изучающая такого рода процессы самоорганизации, с которыми мы встречаемся и в космологии (образование галактик, звезд и планет), и в физике атмосферы (скажем, образование периодических перистых облаков, образование смерчей и т. д.), и в химии (реакции Белоусова — Жаботинского, см. далее), и во всем разнообразии биологических явлений. Можно сказать, что первыми выдающимися трудами в области синергетики были теория происхождения Солнечной системы Канта и Лапласа и эволюционная теория Дарвина. В Происхождении видов показано, как из совершенно неупорядоченной случайной изменчивости возникает упорядоченное развитие биосферы — происходит самоорганизация. [c.485]

    Причина возникновения связей между атомами в молекулах оставалась неизвестной до развития учения о строении атома. После открытия электрона и появления первых моделей атомов был сделан ряд попыток объяснить валентность строением атомов. В 1904 г. английский ученый Дж. Томсон связал валентность с перемещением электронов от одного атома к другому при образовании химических соединений. Позднее, в 1914 г., этот же вопрос был более детально разработан Л. В. Писаржевским. В 1915 г. немецкий химик Коссель предложи.л теорию химической связи, названную впоследствии теорией электровалентной связи. В своей теории он исходил из того факта, что атомы элементов нулевой группы периодической системы инертны, т. е. не вступают в химические реакции с другими атомами. Отсюда Коссель сделал вывод, что атомы инертных элементов имеют особо устойчивые электронные оболочки. В основу теории химической связи он положил представление о том, что одни атомы, химически свя-вываясь с другими атомами, теряют с внешнего энергетического [c.54]

    Явление сверхтекучести (открыто в 1938 г. П. Капицей) связано с отсутствием измеримой вязкости в жидком гелии вблизи абсолютного нуля при движении его через тонкие капилляры и щели. Теория сверхтекучести на основе представления о гелии (при Г<2,19°К) как о квантовой жидкости была развита Ландау [75]. Микроскопическая теория сверхтекучести гелия была развита Боголюбовым [76]. Предложенный Боголюбовым метод приближенного вторичного квантования системы взаимодействующих бозонов представляет значительный интерес не только для теории сверхтекучести, но и для ряда других приложений в случаях, когда нельзя пользоваться теорией возмущений. В этом параграфе мы познакомимся с основными идеями метода Боголюбова, [c.397]

    Органическая химия вначале пошла по иному, особому пути. На основе теории типов Жерара, структурной теории Кекуле, а также пространственных представлений Вант-Гоффа и ЛеБеля была создана система, пригодная почти во всех случаях, которая не давала, однако, обоснованного объяснения типа и существа связующих сил в молекулах. Стимул для дальнейшего развития наших представлений о характере связи атомов в молекулах дали почти одновременно органический эксперимент и физическая теория. Гомберг [5] открыл в 1900 г. первый свободный радикал. Это открытие прежде всего, казалось, опровергало многие тысячи раз оправдывавшийся принцип постоянной, ,четырехвалентносТи атома углерода и способствовало постановке вопроса о природе сил, связывающих атомы. Планк создал в начале нашего столетия квантовую теорию, а в, результате [c.11]

    Первоначально для циклических соединений, как и для соединений других типов, применялись традиционные названия. Однако к концу XIX века число разнообразных типов циклических соединений настолько возросло, что возникла острая необходимость установления системы названий. Практически невозможно, — писал известный химик М. М. Рихтер [117], — присваивать всем открытым и открываемым в будущем циклическим соединениям собственные имена. Поэтому основной принцип автора заключается в уничтожении собственных имен . Такого рода отказ от собственных имен в пользу систематических названий мог быть осуществлен только на основе теории строения органических соединений, впервые позволившей понять и выразить в формулах специфику циклических структур, установить генетические связи между отдельными группами циклических соединений и тем самым систематизировать их. [c.42]

    В книге изложены основы химической термодинамики значительное внимание уделено второму началу и подробному разъяснению смысла энтропии, строению атома, свойствам молекул и теории химической связи. В практической работе биохимика и биолога часто встречаются методы спектроскопии и радиоспектроскопии, поэтому в курс введены соответствующие разделы. После описания фазовых равновесий и свойств растворов изложена химическая кинетика, цепные процессы и катализ, причем отдельно описаны открытые системы. [c.3]


    Вторая половина XIX в. ознаменована бурным развитием органической и физической химии, открытием Д. И. Менделеевым периодического закона и периодической системы элементов. Началось исследование многокомпонентных систем, изучение взаимосвязи реакционной способности соединений с их химическим строением. Многие из открытий того времени вошли в теоретические основы современной аналитической химии, например теории электролитической диссоциации С. Аррениуса, уравнение Нернста. [c.5]

    Физическая химия как наука начала складываться во второй половине прошлого века, хотя уже М. В. Ломоносов впервые указал на важность этой дисциплины и создал первый курс физической химии. Ряд важнейших основ современной физической химии был заложен в России. А. М. Бутлерову принадлежат важнейшие идеи, положенные в основу химических структурных формул, Д. И. Менделееву — открытие периодической системы элементов. В наше время большое значение имеют работы автора теории цепных взрывов Н. Н. Семенова и одного из создателей современной электрохимии А. Н. Фрумкина. [c.9]

    Существует достоверное соответствие между первичными концепциями, лежащими в основе понятия молекулярной структуры, и топологическими элементами молекулярного зарядового распределения. Такое соответствие приводит к теории молекулярной структуры, основанной на свойствах зарядового распределения — свойстве молекулярной системы, определяемом экспериментально. Теория связана с квантовой механикой она показывает, что атомы, определяемые с помощью такого соответствия, представляют собой класс открытых квантовых подсистем с однозначным набором свойств, определяемых с помощью вариационного метода. Ранее был дан обзор как топологических [1], так и квантовомеханических [2] аспектов теории. Настоящая статья является обзором топологического анализа плотности заряда, приводящего к теории структуры и структурной устойчивости молекулярных систем .  [c.56]

    Второй способ упрощения, являющийся разновидностью первого, состоит в том, что число пространственных координат сокращается до одной. В качестве модели развития процессов переноса в направлении отброшенных координат принимаются эмпирические закономерности. Обычно это критериальные уравнения, позволяющие определить кинетические коэффициенты тепло- и массообмена и легко выразить объемные источники массы и энергии через параметры системы (2.2.1). Численные значения коэффициентов критериальных уравнений определяются на основе обработки экспериментальных данных или данных имитационного моделирования задач, полученных в приближениях пограничного слоя, с привлечением теории размерностей и подобия. Уравнение движения 3) в системе (2.2.1) исключается, а осевая скорость движения среды усредняется по сечению аппарата. Данный метод нашел широкое применение в инженерном подходе к моделированию теплообменных и массообменных аппаратов и представляется нам едва ли не единственным при построении полных математических моделей динамики объектов химической технологии. Его преимущества видятся не только в том, что при принятых посылках относительно просто достигается численная реализация математического описания, в котором учитываются причинно-следственные связи между звеньями и их элементами, но и в том, что открывается возможность формализации процедуры построения открытых математических моделей химико-технологических аппаратов. Эта процедура может быть выполнена в виде следующего обобщенного алгоритма. [c.36]

    Еще одна крайняя точка зрения — изучение строения атомов до периодического закона. Такой подход, совершенно игнорирующий принцип историзма, также приведет к недооценке воспитывающей функции обучения. Ведь успешная разработка теории строения вещества оказалась возможной благодаря тому, что периодическая система элементов Д. И. Менделеева направляла ученых на поиски причин периодичности, стимулировала развитие науки. Величайшим проявлением гениальности Д. И. Менделеева было открытие периодического закона лишь на основе сопоставления атомных масс элементов и химических свойств веществ. Первоначальный вариант своей системы ученый так и назвал Опыт системы элементов, основанной на их атомном весе и химическом сходстве . В настоящее время в программе по химии принят наиболее оптимальный вариант тема расположена приблизительно в середине курса. [c.222]

    В 1945 г. Шредингер написал книгу Что такое жизнь с точки зрения физики , оказавшую существенное влияние на развитие биофизики и молекулярной биологии. В этой книге внимательно рассмотрено несколько важнейших проблем. Первая из них — термодинамические основы жизни. На первый взгляд имеется решительное противоречие между эволюцией изолированной физической системы к состоянию с максимальной энтропией, т. е. неупорядоченностью (второе начало термодинамики), и биологической эволюцией, идущей от простого к сложному. Шредингер говорил, что организм питается отрицательной энтропие1и>. Это означает, что организмы и биосфера в целом не изолированные, но открытые системы, обменивающиеся с окружающей средой и веществом, и энергие . Неравновесное состояние открытой системы поддерживается оттоком энтропии в окружающую среду. Вторая проблема — общие структурные особенности органиа-мов. По словам Шредингера, организм есть апериодический кристалл, т. е. высокоупорядоченная система, подобная твердому телу, но лишенная периодичности в расположении клеток, молекул, атомов Это утверждение справедливо для строения организмов, клеток и биологических макромолекул (белки, нуклеиновые кислоты). Как мы увидим, понятие об апериодическом кристалле важно для рассмотрения явлений жизни на основе теории информации. Третья проблема — соответствие биологических явлений законам квантовой механики. Обсуждая результаты радиобиологических исследований, проведенных Тимофеевым-Ресовским, Циммером и Дельбрюком, Шредингер отмечает, квантовую природу радиационного мутагенеза. В то же время применения квантовой механики в биологии не тривиальны, так как организмы принципиально макроскопичны. Шредингер задает вопрос Почему атомы малы Очевидно, что этот вопрос лишен смысла, если не указано, по сравнению с чем малы атомы. Они малы по сравнению с нашими мерами длины — метром, сантиметром. Но эти меры определяются размерами человеческого тела. Следовательно, говорит Шредингер, вопрос следует переформулировать почему атомы много меньше организмов, иными словами, почему организмы построены из большого числа атомов Действительно, число атомов в наименьшей бактериальной клетке [c.12]

    В. Рамзай, 1894—98). Эти открытия привели в конечном счете к принципиально новым представлениям о строении и св-вах материи. В 1911 Э. Резерфорд разработал ядерную (планетарную) модель строения атома. Применив к ней квантовые представления Планка, Н. Бор (1913—21) предложил модель строения электронных оболочек атомов и тем самым заложил основы теории периодич. системы. Атомная модель Резерфорда — Бора стала не только центр, понятием атомистики 20 в., но и легла в основу мн. хим. теорий, в т. ч. электронных представлений о хим. связи (В. Коссель и Г. Льюис, 1916). Исследование радиоактивности способствовало открытию новых радиоактивных элементов (Ро, Ка, Ас, Кп, Ра), а также свойственной им изотопии в этом русле возникла новая дисцинлпна — радиохимия. Достижения X. конца 19 в. положили начало совр. этану ее развития. [c.653]

    В доквантово-механический период общий метод исследования задач теории атомных спектров состоял в следующем вычисления делались на основе некоторой модели при помощи классической механики, а затем делалась попытка изменить формулы так, чтобы эти изменения были незначительными для больших квантовых чисел, однако характер их давал бы возможность достигнуть соответствия f с экспериментом при малых квантовых числах. Следует удивляться тому коли-честву результатов современной теории линейчатых спектров, которое было получено этим путем. Существенные достижения здесь принадлежат Паули, Гейзенбергу, Гунду и Ресселю. Была построена векторная модель сложных атомов, в которой основную роль играло квантование моментов количества. > движения отдельных электронных орбит и их векторной суммы. К этому же V периоду относится открытие Паули правила запрета, согласно которому два электрона в атоме не могут обладать одной и той же совокупностью квантовых чисел. После появления квантовой механики принцип Паули естественным образом вошел в теорию. Однако этот принцип сыграл еще большую роль как эмпирическое правило, в особенности благодаря работам Гунда, посвященным строению сложных спектров, и развитию теории периодической системы элементов, начатую Бором. [c.17]

    Вопросы качественной теории уравнений химической кинетики подвергнуты рассмотрению в монографии [194]. В ней исследованы условип множественности стационарных состояний в открытых системах и показано, что необходимым условием существования нескольких решений системы уравнений квазистационарности является наличие в механизме процесса стадии взаимодействип различных промежуточных веществ. В [194] делается попытка выделения структур, ответственных за появление критических эффектов для классических уравнений химической кинетики. Важным свойством структурированных форм является то, что они наглядно представляют, как "собирается"сложный механизм из элементарных стадий. Для линейных механизмов получены структурированные формы стационарных кинетических уравнений. На этой основе могут быть выяснены связи характеристик механизма процесса и наблюдаемых кинетических зависимостей. Показано, что знание механизма процесса и констант равновесия позволяет построить ограничения на нестационарное кинетическое поведение системы, причем эти ограничения оказываются существенно более сильными, чем обычные термодинамические. [c.236]

    Взаимосвязь различньгх дисциплин во многих случаях можно проиллюстрировать примерами из истории науки. Скажем, периодический закон был открыт химиками, но объяснен на основе теории строения атома физиками тем не менее атомистическая теория строения материи была еще раньше предложена химиками. Периодический закон и периодическая система элементов служат интересам не только химиков, но также физиков и биологов. В качестве второго примера укажем, что процесс фотосинтеза долгое время был предметом изучения ботаников, но химикам удалось вскрыть его механизм, который имеет чисто химическую природу. Это открытие привело к появлению новых областей исследования для биохимиков и даже инженеров, которые ищут пути использования солнечной энергии как дешевого источника, удобного для применения в промышленности. [c.10]

    Берталанффи считает биологические явления познаваемыми средствами точной науки. Мнимое противоречие с термодинамикой снимается, если учесть, что организмы — открытые системы, обменивающиеся с окружающей средой и веществом и энергией. Между тем каноническая термодинамика относится к изолированным системам. Поэтому для физического истолкования биологических явлений необходима термодинамика открытых систем, неравновесная термодинамика. Берталанффи усматривает основу теоретической биологии в теории систем. Система — совокупность объектов, взаимодействующих друг с другом. Свойства системы нельзя представить суммой свойств. образующих систему элементов. Рассмотрение системности позволяет исследовать проблемы целостности, динамического взаимодействия и организации. Для биологии эти проблемы — основные. [c.14]

    Мы уже говорили о трех уровнях развития учения о периодичности — химическом, электронном (атомном) и ядерном они как бы соответствуют развитию, протекающему в трех измерениях. Для первых двух уровней характерно развитие в ширину и глубину. В ширину — совершенствование структуры периодической системы предсказание и открытие новых, неизвестных ранее э.чемен-тов, изучение на основе системы различных свойств химических элементов и их соединений и отыскание тонких закономерностей изменения этих свойств (здесь решающая роль принадлежит опыту и умению химиков). Когда в судьбу периодичности властно вмешалась физика, началось движение вглубь — познание физических причин периодического изменения свойств элементов, разработка теории периодической системы. Переход на атомный уровень отнюдь не означает, что химический уровень отпал оба они, многократно пересекаясь, дополняют друг друга, и без их теснейшего взаимопроникновения нельзя представить себе настоящую картину учения о периодичности. [c.69]

    Квантово-механическая теория подтвердила представление об ароматическом секстете и одновременно она его расширила. В результате расчетов на основе теории молекулярных орбит установили, что все моноциклические полиеновые системы, имеющие 4п-Ь2 тг-элек-трона (где тг = О, 1, 2, 3 и т.д.), обладают высокой энергией сопряжения и, следовательно, ароматической устойчивостью (Е. Хюккель, 1931 г.). Согласно этой теории, все циклы с 2, 6, 10, 14 и т.д. т -электронами в сопряженной системе обладают, таким образом, аро- 1 матическим характером. Правило Хюккеля оказалось ценным указа- нием для предсказания и открытия новых ароматических соединений. [c.313]

    Квазиэнергия или квазиэнтропия. Рассмотрим открытые системы, в которых возможны неравновесные стационарные состояния. Из производящего равенства (28.3) не удается получить ФДС, пригодные вблизи с Льно неравновбсных стационарных состояний. Теорию, соответствующую сильно неравновесным состоянияхм, целесообразно строить на другой основе, а именно целесообразно взять в качестве базисного состояния неравновесное стационарное состояние, а не равновесное состояние, как это делалось в гл. 2. При таком подходе, правда, нельзя пользоваться условием временной обратимости. Поэтому теория становится более бедной, чем обычная теория, изложенная в гл. 2 и 3. Интегрируя уравнение (28.4) по переменным В", по которым система открыта, получаем уравнение [c.338]

    Обратимся теперь к развитой Пригожиным в 1970-1980-е годы нелинейной термодинамике неравновесных процессов, важнейшими составными частями которой являются теории диссипативных систем и бифуркаций. На первый взгляд может показаться, что рассмотренные на ее основе системы существенно отличаются от выбранной системы структурной организации белков. Конвекционные ячейки Бенара, когерентное излучение лазера, турбулентное движение жидкости, реакция Белоусова-Жаботинского, модель Лотке-Вольтерра, описывающая взаимоотношения между "хищником и жертвой", - все это открытые диссипативные структуры. Динамические процессы перечисленных и подобных им неравновесных макроскопических систем, действительно, приводят при достижении условий, превышающих соответствующий критический уровень, к спонтанному возникновению из беспорядка высокоорганизованных пространственных, пространственно-временны х и просто временных структур. Однако во всех случаях поддерживание возникшего из хаоса порядка в стационарном режиме оказывается возможным только при постоянном энергетическом и/или материальном обмене между окружающей средой и динамической системой. Совершающийся в такой открытой системе неравновесный процесс вдали от положения равновесия связан с диссипацией, т.е. с производством энтропии, или, иными словами, с компенсируюпщм это производство потреблением негэнтропии из окружающей среды. Перекрытие внешнего потока негэнтропии автоматически приводит к прекращению системой производства энтропии и, как следствие, распаду созданной диссипацией структуры. У открытых диссипативных систем аттрактором является не равновесное состояние, а расположенное далеко от него состояние текущего равновесия. [c.462]

    Кроме частных пределов развития, теория предсказывает существование общего предела химической добиологической эволюции каталитических систем, при достижении которого исчерпываются все физикохимические возможности дальнейшей эволюции неживых каталитических систем. Эволюционное преодоление общего предела химической эволюции оказывается возможным только в результате формирования свойства точной пространственной редупликации сложных открытых каталитических систем. При появлении этого свойства каталитическая система превращается в живую систему, а химическая эволюция сменяется биологической. Все свойства каталитических систем, приобретенные в процессе добиалогической эволюции переходят как первичные свойства к живым Открытым системам, а все эволюционные закономерности химической эволюции ложатся в основу аналогичных эволюционных закономерностей живых систем. Это является причиной удивительного сходства основных функций саморазвивающихся каталитических систем, относящихся к мертвой природе, с рядом функций простейших живых организмов, а также причиной существования общих эволюционных закономерностей, что можно отметить, сравнивая данные по эволюции каталитических систем с фактами биологии. Это обстоятельство позволяет обосновать биологические закономерности первичными закономерностями саморазвития неживых каталитических систем и открывает перспективы использования йолюционного катализа для развития теоретической биологии. При этом становится возможным полное теоретическое описание сущности, происхождения и раэвйти жизни на уровне точных наук. [c.6]

    В работе представлены методологическое обоснование теории, термодинамическая, статистическая модель сложного вещества. Предложены релаксационные, нестационарные, марковские модели физико-химических процессов. Теория подтверждена экспериментом на примере процессов пиролиза, поликонденсации и термополиконденсации. Анализируются отличительные особенности термодинамики многокомпонентных систем, подчеркивается особая роль энтропии в формировании их разнообразия. Рассмотрена специфическая для вещества энтропия разнообразия, рост которой является источником эволюции вещества. Излагается новое направление, необходимое при изучении сложных органических систем - непрерывный, феноменологический подход к спектрам веществ. Анализируются закономерности, открытые нами в спектрах, в частности закон связи различных свойств и спектральных характеристик систем. Последнее означает, что свет несет информацию практически о всех свойствах материи. На основе данных спектроскопии предпринята попытка построения теории реакционной способности многокомпонентных органических систем. Отмечена особая роль квазичастиц- типа структуронов и вакансионов в формировании их реакционной способности. Показана роль слабых химических взаимодействий в гидродинамике многокомпонентных жидких сред. Даны новые подходы к направленному синтезу сложных органических систем. Экологические, геохимические системы и вопросы генезиса углеводородных систем планируется рассмотреть во второй части книги. [c.4]

    Ближайшими же практическими результатами этой теории являются уже исследованные в лабораторных условиях процессы, в основу которых положено энергетическое сопряжение реакций, в том числе таких, на которые наложены строгие термодинамические ограничения. Согласно одному из принципов химической эволюции саморазвитие открытых каталитических систем совершается за счет энергетического сопряжения с экзэргонической базисной реакцией, КПД использования которой в ходе эволюции растет. Следовательно, в системе развиваются процессы, направленные против равновесия, сама же система приобретает динамическую устойчивость, или устойчивое неравновесие . Этот принцип и использован для осуществления ряда реакций, которые пока не были реализованы иными путями. [c.210]

    Работы Г. Мозли (1887—1915) показали, что действительной основой периодического закона являются не атомные массы, а положительные заряды ядер атомов, численно равные порядковому номеру элемента в периодической системе. На основании периодического закона и работ Г. Мозли был решен важный вопрос о числе еще неоткрытых элементов. Было установлено, например, что между водородом н гелием или между натрием и магнием новых элементов быть не может. Открытие и дальнейшее развитие периодического закона не только избавило исследователей во многих случаях от бесполезной и трудоемкой работы по поиску новых элементов, но и позволило установить число неоткрытых элементов и их порядковые номера в периодической системе. Однако знание только порядкового номера не давало еще оснований помещать элемент в определенную группу периодической системы. Этот вопрос решался с помощью электронной теории строения атома. Применение этой теории показало, например, что неоткрытый элемент № 72 должен быть аналогом циркония, а не лантаноидов. Элемент № 72 (гафний) действительно был найден в циркониевом минерале в 1923 г., а не в лантаноидах, где его много лет безуспешно искэли, ошибочно считая аналогом лантаноидов. Даже спустя 70 лет после открытия периодического закона в таблице элементов до урана пустовали четыре клетки с номерами 43, 61, 85 и 87. Эти элементы — технеций, прометий, астат и франций — были [c.14]

    Кратко остановимся на попытках истолкования природы явления хемосорбции органических соединений в области высоких анодных цотенциалов. В ранних работах, относящихся к периоду открытия этого явления, считали, что оно связано с наличием в молекуле органического соединения валентно-ненасыщенных групп. Большая роль придавалась л-электронному взаимодействию органических молекул с поверхностью (образование поверхностных соединений типа я- комплексов). Хотя эти представления хорошо объясняли, например, высокую адсорбируемость диенов с легко поляризуемой системой сопряженных п-связей, при трактовке причин адсорбируемости при высоких анодных потенциалах таких соединений, как алифатические спирты, встретились трудности. Явление хемосорбцни при высоких анодных потенциалах пытались истолковать на основе лигандной теории хемосорбции. Полагали, что хемосорбированные органические частицы, как и другие адсорбирующиеся компоненты раствора, включаются в полусферу комплекса, в котором центральной электронно-акцеп-торной частицей является ион Р1" +. Это объясняло конкурентный характер адсорбции, но нередко вступало в противоречие с ожидаемыми корреляциями между склонностью органических веществ к ком плексообразованию с платиновыми ионами и их адсорбируемостью в области высоких анодных шотенциалов. [c.122]

    Круг проблем, решенных физико-химической механикой, свидетельствует о том, что она немыслима без использования основных представлений современной коллоидной химии и физико-химии поверхностно-активных веществ. Большой вклад в ее становление внесли результаты научных достижений по проблеме Поверхностные явления в дисперсных системах . Ведущая роль в развитии исследований по проблеме поверхностных сил и поверхностных явлений принадлежит Б. В. Дерягину и его школе. Ими впервые развита строгая и общая теория электрокинетических явлений с учетом диффузионных процессов, а также теория коагуляции дисперсных систем. Созданы новые направления в изучении устойчивости пен и эмульсий на основе открытия и исследования равновесных состояний свободных и двухсторонних пленок. В развитие проблемы поверхностных явлений значительный вклад внесен также П. А. Ребиндером, А. Б. Таубманом, Ф. Д. Овчаренко, Е. К. Венстрем, Н. Н. Серб-Сербиной, Е. Д. Щукиным, Н. Н. Круглицким и др. Фундаментальные исследования поверхност-но-активных веществ и проблема строения их адсорбционных слоев на поверхности раздела фаз проведены А. Б. Таубманом с сотрудниками. Важные работы осуществлены по изучению физико-химии контактных взаимодействий в дисперсных системах (Г. И. Фукс, И. М. Федорченко, Г. В. Карпенко, Н. Л. Голего, В. Д. Евдокимов, Б. И. Кос-тецкий, Г. В. Самсонов, Ю. В. Найдич, Л. Ф. Колесниченко, А. Д. Па-насюк, В. Н. Еременко и др.). [c.11]

    Важнейшим событием в развитии Периодической системы за последние годы явилось упразднение пулевой группы, которая была создана Менделеевым в 1903 г. для помеш,ения в нее элементов, которые в то время называли инертными газами. Открытие валентно-химических соединений ксенона и его аналогов и изучение их химических свойств показало, что благородные газы являются элементами главной подгруппы VIII группы Периодической системы. Д. И. Менделеев в Основах химии писал Периодический закон ждет не только новых приложений, но и усовершенствований, подробной разработки и свежих сил... По-видимому, периодическому закону будущее не грозит разрушением, а только надстройка и развитие обещается . Эти пророческие слова творца Периодического закона и Периодической системы целиком и полностью оправдываются в настоящее время. Один из основоположников геохимии акад. А. Е. Ферсман писал Будут появляться и умирать новые теории, блестящие обобщения... Величайшие открытия и эксперименты будут сводить на нет прошлое и открывать на сегодня невероятные по новизне и широте горизонты,— все это будет приходить и уходить, но Периодический закон Менделеева будет всегда жить и руководить исканиями . [c.11]

    Значительный вклад в изучение фазовых равновесий в многокомпонентных системах, в основе которого лежит детальный анализ процессов открытого испарения (конденсации) и установление термодинамикотопологических закономерностей в структуре диаграмм равновесия жидкость — пар, развито в работах Жарова и Серафимова [39]. Попытка более или менее подробного пересказа содержания этой оригинальной и обстоятельной монографии вряд ли будет оправданной, тем более потому, что одно из достоинств ее — строгость и последовательность изложения. Некоторые вопросы термодинамической теории равновесий жидкость — пар в многокомпонентных системах решены авторами настоящей книги (Морачевский и Смирнова) в работах, выполненных совместно со Сторонкиным. Эти результаты также достаточно полно отражены в отечественной монографической литературе, в частности, в указанной в предыдущих главах монографии Сторонкина, в монографиях Когана. [c.79]

    Это открытие легло в основу современной электрон1юй теории полупроводникового катализа, важное место в которой занимают положения, отражающие реально существующую не-прерывиость элементарного акта активации посредством взаимодействия дискретной и непрерывной форм химической организации вещества. При этом промежуточными ступенями химического взаимодействия являются непрерывные электронные переходы делокализация электронов связей в молекуле реагента и в решетке кристаллического катализатора, образование электронного газа с его неравномерностями — лишними электронами у одних атомов решетки и дырками — у других, образование валентных связей за счет электронной системы молекулы реагента и электронного газа кристалла с различными значениями электронных зарядов этих связей, непрерывное изменение электронных зарядов всех связей в единой квантово-механической системе хемосорбции за счет непрерывного изменения самой этой системы в результате адсорбции и десорбции. [c.406]

    Опираясь на правило триад, Ленсен в 1857 г. расположил все известные в то время элементы в закономерную, с точки зрения этого правила, систему. Система Одлинга, основанная л а том же правиле триад и появившаяся в том же году, уже содержит многие элементы в той группировке, в которой они расположены в периодической системе в настояш ее время. Однако правило триад, поскольку оно на основании атомного веса допускает группировку в триады также и совершенно несхожих между собой веществ, оставляло в этом отношении широкий простор произволу. Тем не менее его необходимо считать крупным шагом вперед благодаря тому, что им впервые установлена возможность положить в основу сходства элементов такое соотношение, которое может быть определено количественно. Не менее важным было и то, что здесь впервые была высказана мысль о зависимости между свойствами и атомными весами. Тогда, однако, еще не знали методов для точного определения атомного веса. Поэтому для открытия периодического закона решающее значение имело предложение Каницарро (1860) — при определении атомных весов брать за основу молекулярные веса веществ в газообразном и парообразном состоянии так, как это дается теорией Авогадро. Таким образом, была создана довольно строгая основа для определения атомных весов. [c.27]


Смотреть страницы где упоминается термин Основы теории открытых систем: [c.653]    [c.51]    [c.52]    [c.57]    [c.377]    [c.407]    [c.99]    [c.9]    [c.114]    [c.229]   
Смотреть главы в:

Химическая термодинамика материалов -> Основы теории открытых систем




ПОИСК





Смотрите так же термины и статьи:

Система открытая

Системы на основе

Системы открытие



© 2025 chem21.info Реклама на сайте