Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фактор трения определение

    Внешнее трение является процессом, в сильной мере зависящим от условий испытания и состояния поверхностей трущихся пар. В этом параграфе мы рассмотрим влияние на силу трения следующих основных факторов метода определения силы трения состояния и обработки поверхностей влажности смазки (качественно) среды структуры и свойств пары трения наполнителей полимеров электрических зарядов. [c.82]


    Мерой физического износа детали под действием трения может служить толщина изношенного слоя (в мкм) рабочей поверхности. Она зависит от продолжительности эксплуатации и таких факторов, как материал детали, качество обработки поверхностей, вид смазки. Установлено, что для физического износа отдельных деталей (узлов) машин под действием трения характерны три последовательные стадии интенсивный износ в период приработки более медленное нарастание износа в период нормальной работы прогрессивное нарастание износа после достижения определенного значения. Меньше изучены закономерности физического износа деталей, разрушение которых происходит не под воздействием трения, а по другим причинам, например вследствие усталости. Еще меньше изучены закономерности физического износа машин в целом эта задача является более сложной. [c.225]

    Пленочно-кольцевой режим течения. При пленочно-кольцевом режиме течения жидкость движется вдоль стенок со скоростью, составляющей примерно 5% скорости газа, и скорость газа, естественно, является гораздо более важной в определении потерь давления. Одним из лучших путей обобщения экспериментальных данных является графическое представление кажущегося фактора трения в функции кажущегося числа Рейнольдса для течения газа, вычисленного в предположении, что жидкая фаза отсутствует. На рис. 5.15 показаны кривые такого рода для ряда чисел Рейнольдса, вычисленных в предположении, что по трубе течет только одна жидкость. Видно, что чем выше массовая скорость жидкости, тем больше кажущийся фактор трения. Этого и следовало ожидать, так как увеличение массовой скорости жидкости не только уменьшает площадь поперечного сечения, свободного для движения [c.102]

    Густая смазка, применяемая в централизованных системах на металлургических заводах, может, прежде всего, загрязняться водой, эмульсией, окалиной и пылью. Пыль, попадающая на поверхности трения из атмосферы, обычно содержит в себе мельчайшие частицы угля, железной руды, сажи, окислов железа и т. д. Помимо этого, в густую смазку попадают продукты износа с поверхностей трения и она подвергается разложению под действием высокой температуры. Таким образом, смазочные свойства густой смазки постепенно ухудшаются. Условия работы и быстрота загрязнения являются решающими факторами при определении интервала времени, через который в централизованных системах должна производиться подача смазки с целью ее постепенного обновления. [c.31]

    Приведенный на рис. 8.43 пример показывает зависимость фактора трения при течении в трубопроводе от числа Рейнольдса для растворов ПЭО с молекулярной массой порядка 10 различной концентрации. Фактор трения измерялся в потоке на двух участках трубопровода с наружным диаметром 0,63 см и длиной 1700 диаметров. Различие между факторами трения, определенными на двух участках трубы, представляет собой показатель деструкции. Деструкция выше при более высоких значениях числа Рейнольдса, что соответствует действию больших напряжений на разрушенные связи. [c.419]


    При течении в цилиндрических трубках / в уравнении (1-6) совпа-дает с известным определением фактора трения в уравнении Фан-нинга, а также идентичен обычному коэффициенту трения при движении вдоль плоских поверхностей. Чтобы определить полную потерю напора в теплообменнике, необходимо, помимо трения, учитывать и другие сопротивления. Полное уравнение движения, включающее коэффициент сопротивления, дано в гл. 2. Из него следует, что сделанное определение коэффициента сопротивления и интегральная форма уравнения движения одинаково применимы как для движения в трубах, так и при поперечном обтекании пучков труб любого типа. [c.17]

    Фактор трения /п учитывает потерю напора, связанную с увеличением количества движения в процессе перестройки профиля скоростей. Факторы трения / и /п взаимно связаны, и каждый из них может быть определен по значению другого, если известно изменение количества движения. Поправочный коэффициент, учитывающий изменение количества движения Кй, представлен на графике рис. 6-22 и может быть использован для оценки количества движения в любом сечении потока Кй связывает действительное количество движения с тем, которое может быть определено на основании среднего значения скорости, [c.88]

    Описывается также одна поверхность с перфорированными ребрами, которая обозначается просто числом ребер на единицу длины перпендикулярно направлению потока и буквой Р. Отверстия, вырезанные в ребрах, и в этом случае служат для разрушения пограничного слоя. Факторы трения для этой поверхности очень малы, вероятно, вследствие очень незначительного коэффициента сопротивления формы однако, к сожалению, имеется недостаточно данных для поверхностей такого рода, чтобы можно было сделать более определенные общие заключения о ее характеристиках. [c.119]

    При течении в цилиндрических трубках коэффициент сопротивления / совпадает с известным определением фактора трения в уравнении для потери давления (уравнение Фаннинга) [c.564]

    Кривые для фактора трения при поперечном обтекании пучка /г в уравнении (9.15) представлены на рис. 9.9—9.11. Следует заметить, что доля потока Рр, использованная для определения фактора трения при поперечном обтекании, отличается несколько от доли потока использованной для определения коэффициента теплоотдачи, поскольку изменение характера течения по-разному влияет на потери давления и теплообмен. Например, течение через зазор между трубным пучком оказывает влияние на потери давления в окне между перегородкой и кожухом и в то же время не влияет на теплоотдачу. Подвержено этому влиянию также и число Рейнольдса таким образом, доля потока и число Рейнольдса, использованное для нахождения /г на рис. 9.9—9.11, определяются так [c.182]

    Другие потери в центробежной ступени вызваны трением дисков колеса. Газ, находящийся в зазоре между корпусом и рабочим колесом, захватывается внешними стенками колеса и вращается вместе с ним при этом в газе возникают завихрения. Величина потерь, вызванных этим вращением газа, зависит от многих факторов для определения их имеется несколько эмпирических формул. [c.49]

    Важным фактором, влияющим на эффективность противоизносного действия присадок, является снижение уровня энергии твердого тела, известное под названием адсорбционного эффекта понижения прочности (эффект Ребиндера). Различают внешний и внутренний эффекты. Внешний вызывается адсорбцией ПАВ на внешней поверхности деформируемого тела, внутренний возникает в результате адсорбции ПАВ на поверхности дефектов внутри твердого тела. Внешний эффект приводит к пластифицированию поверхности твердого тела, что при умеренных режимах трения положительно сказывается на снижении ее износа. Следует, однако, отметить, что эффект пластифицирующего действия наблюдается лишь в определенных (ограниченных) интервалах температур и скоростей деформаций. С повышением температуры адсорбционный эффект, как правило, снижается, что определяется не только уменьшением величины адсорбции, но и изменением ее характера (превращение физической адсорбции в хемосорбцию). [c.256]

    Автомодельность может наступить при изменении условий протекания процесса. Типичным примером служит сопротивление сил трения движению вязкой жидкости. Как показано в дальнейшем, при значениях критерия Рейнольдса ниже определенного предела оно зависит главным образом от этого критерия и в малой степени — от шероховатости стенок трубы. Однако при увеличении Ке сверх некоторого критического значения фактором, определяющим сопротивление, становится именно шероховатость стенок трубы. Сопротивление перестает зависеть от Ке, т. е. процесс становится автомодельным по этому критерию (см. стр. 88). [c.82]

    Процесс трения вносит в адсорбцию определенные особенности. При трении на величину адсорбции и десорбции помимо обычных факторов существенно влияют такие параметры, как характер обработки поверхности металла и его предварительная деформация, В частности, результаты опытов показали, что величина поверхности, заполненной адсорбированными молекулами присадки, по мере повышения шероховатости изменяется экстремально, имея максимальное значение при шероховатости, характеризуемой выступами размером 0,3—0,4 мм. Это, по-видимому, связано с тем, что число узлов решетки на 1 см шероховатой поверхности оказывается в 1,5—2 раза выше, чем на идеально гладкой. [c.256]


    Мерой физического износа деталей (узлов) машины под воздействием трения может служить толщина (в мкм) изношенного слоя рабочей поверхности детали. Исследование зависимости ее от продолжительности эксплуатации при изменении различных факторов (материала детали, качества обработки поверхностей, рода смазки и т. д.) показали, что физический износ деталей (узлов) машин под воздействием трения протекает в три стадии (рис. 12.1) интенсивный износ в период приработки медленное нарастание износа в период нормальной работы прогрессирующее нарастание износа после достижения определенного значения. [c.516]

    В одном из ранних исследований с применением фильтра с поршнем было найдено, что величины среднего удельного сопротивления осадка, определенные обычным способом и вычисленные по уравнению (У,24), отличаются одна от другой не более чем на 10% [177]. В дальнейшем был выполнен ряд исследований на фильтре с поршнем, в результате чего установлено заметное влияние факторов, не учитываемых в уравнениях (У,23) и (У,24), и отмечено несоответствие между величинами удельного сопротивления осадка, найденными экспериментально и вычисленными по этим уравнениям. Рассмотрим в общих чертах некоторые из упомянутых исследований дополнительно к сведениям, помещенным в главе II о введении корректирующего множителя и учете трения осадка о стенки фильтра. [c.181]

    Тепловой режим газопроводов. Подземные газопроводы постоянно находятся в состоянии теплообмена с окружающей средой. Образование гидратов, отложение парафинистых осадков, выпадение конденсата углеводородов и воды — обычные явления, имеющие место при эксплуатации газопроводов. Изменение температуры в газопроводе зависит от трех факторов охлаждения или нагревания потока в трубе за счет теплообмена с окружающей средой, снижение температуры за счет падения давления (эффект Джоуля—Томсона), нагревание потока за счет превращения работы по определению сил трения в тепло внутреннего теплообмена. Последний фактор играет незначительную роль и его можно пе учитывать при расчете температурного режима газопровода. [c.168]

    Определение Nu при нагреве за счет вязкой диссипации. Во многих промышленных процессах интенсивности нагрева за счет вязкой диссипации особенно велики вблизи стенки, как, например, при течениях, обусловленных перепадом давления, в каналах. Маленькие скорости (условие отсутствия скольжения) делают конвекцию в этой области второстепенным фактором, так что локальная температура определяется из баланса между вязкой диссипацией и теплопроводностью. Из-за низких коэффициентов теплопроводности возникают большие температурные градиенты, в результате чего распределение температур у стенки довольно слабо зависит от среднемассовой температуры жидкости. Поэтому использование коэ( )фициентов теплоотдачи [см. (31)] или числа Nu [см. (30)], отнесенного к среднемассовой температуре, может привести к физически ненадежным значениям этих величин. Ниже мы проиллюстрируем это утверждение на примере и затем повторно определим число Нуссельта, чтобы сделать его приемлемым для течений с суш,ественным нагревом из-за внутреннего трения. [c.336]

    При умеренной скорости горения пламя, распространяющееся в горизонтальной трубе со стороны открытого конца, приобретает специфическую наклонную, вытянутую вперед форму. На определенном протяжении пути пламени такое горение остается стационарным. В дальнейшем, так же как и при горении в вертикальной трубе, усиливающееся трение о стенки при истечении продуктов реакции из трубы приводит в движение и сгорающую среду, поверхность пламени прогрессивно увеличивается и горение ускоряется. Описанная форма пламени является следствием воздействия на горение обоих искажающих факторов — сил тяжести и трения. Форма пламени определяется соотношением между нормальной скоростью пламени и скоростью движения газа вблизи каждого участка фронта. [c.13]

    Некоторые методы позволяют оценить только одну какую-либо характеристику топлива, влияющую на износы, или моделируется один из видов трения или факторов, действующих в двигателе. В трущихся парах наряду с реальными конструкционными материалами применяют и иные, более мягкие. Но есть методы, в которых с большей приближенностью моделируются или воспроизводятся реальные условия износа наиболее нагруженных деталей топливной аппаратуры (качающего узла насосов-регулятор ов). К ним относятся усовершенствованные методы [107], основанные на применении машины [38, с. 25—34], а также метод определения износного числа [111]. [c.129]

    Моторное масло должно обладать смазывающей способностью, т. е. требуемой вязкостью, хорошей прокачиваемостью при любой температуре, до -которой может нагреться двигатель, и, кроме того, оно должно иметь определенную маслянистость . Испытание маслянистости и способности масла работать при высоких давлениях проводится с помощью специальных устройств, измеряющих трение, таких, нанример, как прибор Дили и Хер-шеля (Deeley and Hershel [6]). Практика эксплуатации показывает, что обычные минеральные масла имеют удовлетворительные показатели маслянистости , хотя следует заметить, что зубчатые передачи автодвигателей требуют использования смазочных масел, содержащих противоизносные присадки. Минеральные масла среднего молекулярного веса, полученные из нефтей, не содержащих парафина, или депарафинизированные настолько, что их температура застывания удовлетворяет требованиям, предъявляемым климатическими условиями (—20° С в умеренном климате, —35° С на севере), будут сохранять удовлетворительную вязкость и подвижность при температуре эксплуатации. Способность моторного масла охлаждать двигатель — очень важный фактор, большая часть производимой при сгорании топлива тепловой энергии удаляется с помощью масла. Но улучшить эту характеристику трудно теплоемкость и теплопроводность масел можно варьировать в небольших пределах. [c.491]

    На точность положения детали оказывает существенное влияние последовательность приложения силового замыкания. Механизм его влияния заключается в том, что при последовательном применении очередной силы приложенные ранее силы и вызванные ими силы трения и их момент в определенной степени препятствуют ее действию. Этот фактор приобретает существенное значение, когда к точности положения монтируемой детали предъявляются высокие требования. [c.107]

    Аналитические зависимости между напряжениями и углом внутреннего трения для ряда сыпучих материалов приведены в работах [20—23]. Следует отметить псследования [24], где показано, что ве.т1пчипа угла внутреннего трения в диапазоне давлений 0,125—0,42 МПа изменяется незначительно, в большей степени зависит от способа загрузки частиц и в меньшей — от приложенного давления. В [25] показано, что при нагреве сыпучего материала с 20°С до 500—600°С значение коэффициента внутреннего трения практически не меняется (если при этом не происходит изменение физического состояния частиц в местах их контакта). Сонротивление сыпучих материалов при контакте с другими телами, например с вертикальной стенкой емкости, подчиняется тем же закономерностям, что и внутреннее сопротивление частиц сдвигу, В большинстве случаев угол внешнего трения всегда меньше угла внутреннего трения между частицами. Показано [18], что для ряда материалов углы внешнего трения не зависят от способов укладки частиц. В [26] приведен анализ многих результатов и сделан вывод, что угол естественного откоса всегда меньше угла внутреннего трения материала. Значения рассмотренных параметров зависят от многих факторов — гранулометрического состава, формы и размера частиц, плотности их укладки, состояния поверхностей на границах слоя и др. Эти характеристики определяются индивидуально для каждого материала по стандартной методике на приборах [27, 28], В [29] показано, что эти приборы пригодны и для определения экспериментальных характеристик катализаторов, [c.26]

    Достоинствами микротвердомера МТР-1 являются отсутствие трения скольжения стержня индентора особая конструкция подвески индентора, устанавливаемой строго вертикально к поверхности образца, что исключает боковые составляющие силы и, следовательно, уменьшает разброс показаний при повторных измерениях автоматическое нагружение и разгружение индентора по заданной программе, чем обеспечивается точность получаемых данных при строго определенном времени выдержки индентора на образце. Прибор позволяет обнаруживать даже небольшие изменения твердости, происходящие в резинах под воздействием физико-химических факторов. [c.68]

    Величина гидравлического сопротивления оребренных трубок при продольном их обтекании по данным Фортескье и Холла-[2 37] значительно выше, чем по данным, полученным Кнудсеном и Кацем [2-36] при одинаковых значениях параметра Vf VFF (рис. 2-20) величина фактора трения, определенная на основании уравнения (2-44) и графика на рис. 2-21, в 2—3 раза выше, чем по данным рис. 2-20. [c.87]

    Исследование трубных пучков и стерженьковых решетчатых насадок методом нестационарного режима проводилось в той же аэродинамической трубе. Исследовавшиеся трубные пучки собирались таким образом, что фронтальное сечение их имело размеры 213x248 мм использовались алюминиевые трубки диаметром 9,5 мм, которые входили своими концами в пластмассовые трубные доски в верхней и нижней частях испытываемого объекта. При компоновке всех исследованных пучков использовались один и тот же каркас и те же трубки сменными были трубные доски. Для определения фактора трения использована методика, аналогичная описанной выше. Теплоотдача в пучке исследовалась методом нестационарного режима, для чего одна из алюминиевых трубок была заменена идентичным по форме и размерам медным стержнем, содержащим термопару. Методика исследования заключалась в нагревании стержня примерно на 16,5° С выше температуры воздушного потока, после чего он помещался в нужном месте в пучке и охлаждался, причем непрерывно регистрировалось изменение температуры стержня. На основании полученных данных легко определяется коэффициент теплоотдачи. Точность такого метода проверялась сопоставлением с результатами, полученными описанным выше методом стационарного режима в условиях нагревания воздуха паром. Было установлено, что этот метод дает прекрасные результаты для шахматных пучков труб, однако применим с известными ограничениями в отношении коридорных трубных пучков. Метод нестационарного режима отличается простотой, точностью и скоростью, с которой могут быть получены данные для различных компоновок трубок в пучке. Погрешности, как показал [c.110]

    Ввиду чрезвычайно большого разнообразии естественных русел, в которых коэффициенты шероховатости изменяются для одного и того же участка в зависимости от наполнения русла и других факторов, для определения потерь напора на трение по длине естественного водотока надлежит пользоваться коэффициентами шероховатости, полученными в результате полевых гидрологических исследований для данного участка реки при наполнений русла, наиболее подходящем к проектному в случае отсутствия таковых исследований для данного участка возможно пользоваться подобными данным и, наблю девньши на других участках данной реки или на других реках, находящихся в условиях, аналогичных с рассматриваемым участком. [c.83]

    Обычно при выявлении аналогии для характеристики отдельных видов перенооа используются фактор переноса вещества, фактор переноса тепла и коэффициент трения. Определение фактора переноса вещества приведено выше [уравнения (31А) и (31В)]. Фактор переноса тепла /л определяется соотношением [c.63]

    Уменьшение кажущейся вязкости может быть достигнуто добавлением небольших количеств (от 1 млн до 1 %) полимеров с определенной растворимостью в основной жидкости. Паттерсон и сотр. [571] и Хойт [364] составили перечень растворов полимеров, которые изучались с целью снижения турбулентности. Фроммер и соавт. [239] определяли влияние состава полимера на эффективность понижения сопротивления в потоке. Снижение турбулентности (эффект Томса) в разбавленных полимерных растворах может происходить в результате сохранения ламинарного течения при аномально высоких значениях числа Рейнольдса (см. рис. 8.1) или при снижении фактора трения при полностью развитой турбулентности. В литературе возникла дискуссия по поводу этого явления (см., например, Паттерсон и др. [571] и Рэм и др. [621 ]). Петерлин предполагал, что гибкие молекулы при больших градиентах скорости деформируются, участвуя в вихревом движении, при этом молекулы вытягиваются во много раз по сравнению с размерами хаотичного клубка, увеличивая тем самым локальную вязкость, которая ослабляет вихревое движение [582]. [c.418]

    Масло с определенным уровнем вязкости, обеспечивающее нормальную работу узла трения при максимальном температурном режиме, иеработоспособно при низких температурах из-за резкого увеличения вязкости (рис. 4). В этом случае подбирают маловязкое базовое масло (3—4 мм /с при 100 °С, см. риВ ая 3) с хорошими низкотемпературными свойствами и повышают его вяЗ КОсть до. необходимого уровня, при высоких температурах (точка А) введением полимерных присадок. Вязкость загущенного масла при низких температурах изменяется примерно так же, как и маловязкой основы (ом. рис. 4, кривая 2). Недостатком загущенных масел является низкая стабильность к механическим и термическим воздействиям. В узлах трения происходит постепенная деструкция полимера, и вязкостно-температурные свойства загущенных масел ухудшаются. Окорость и глубина деструкции определяются химической природой и молекулярной массой присадки, а также температурой, нагрузками и другими факторами. [c.29]

    В первом и втором столбцах дается определение вели-/. /я Аи последние величины введены Чилтоном Кольбарном ( hilton and oiburn, 1934). Равенство вто-Р - го и третьего столбцов вытекает из уравнений (3-54), ( -2 )) и (3-58). Фактор трения f идентичен коэффициенту сопротивления С , упомянутому в главе 2. [c.89]

    Прежде чем приступить к обжигу, необходимо придать подготовленной массе определенную форму и размер, что достигается в результате ее прессования. При производстве углеграфитовых материалов использ тот два основных метода прессования - в пресс-форму и выдавливанием через мундштук. Наиболее распространен второй метод. Кроме того, используют вибраторы (вибропрессование). Общим для всех методов прессования является то, что в определенных условиях под действием внешнего усилия материал подвергается пластической деформации, когда он течет подобно жидкости. Пластичность обусловлена внутренним трением связующего, его адгезионными свойствами, трением зерен утлеродистого материала и т.д. Качество получаемых формовок зависит от количества связующего, температуры и давления прессования, гранулометрического состава и формы зерен и других факторов, влияющих на процесс прессования. [c.25]

    Приведенные выше уравнения не учитывают влияния вязкости среды. Как уже упоминалось, аналитическое определение влияния этого фактора весьма трудно. Классическая трактовка этого вопроса, разработанная Пфлейдерером и развитая в дальнейшем в работах В. И. Поликовского и М. И. Невельсона, базируется на упрощенной схеме явлений. Предполагается, что сила трения вызывает равномерное по всей ширине потока уменьшение величины Си при неизменной величине с . Это приводит к отклонению всего потока от логарифмической спирали в сторону увеличения угла а. В соответствии с этой схемой угол потока на любом радиусе определяется формулой [c.177]

    Пенетрометры. Деформируемость пласто-эластичного материала может быть оценена по глубине вдавливания индентора при строго определенных нагрузке, продолжительности ее приложения и температуре, а эластичное восстановление — по глубине погр)гжения индентора через определенное время после снятия нагрузки. Методы, основанные на этом принципе, дают возможность получать лишь условные показатели, зависящие от ряда факторов — величины и формы индентора, рельефа поверхности материала, трения между индентором и материалом, влияния твердой подложки и др. [c.34]

    Как известно, один пз этих критериев Не достаточно хорошо изучен опытным путем и широко используется в инженерных расчетах. Корреляция других видов потерь энергии обычно не учитывается и замалчивается. Однако в некоторых случаях пренебрежение ими ведет к суш ественным ошибкам в расчетах. Так, в работе [2] нри определенных исходных данных сопоставлены результаты расчетов ио определению давлений на выкиде трубопровода с опытнылш данными. Расхождение получилось существенное. Чтобы привести в соответствие расчетные результаты с опытным, потребовалось при расчетах потерь напора коэффициент гидравлического соиротивления, определяемый по известным формулам, как функция числа Не и относительной шероховатости труб, увеличить на 27%. Очевидно, такое расхождение можно объяснить неучетом других коррелирующих факторов и это расхождение будет тем больше, чем меньшую долю будут составлять потери на трение от общих потерь. [c.131]


Смотреть страницы где упоминается термин Фактор трения определение: [c.90]    [c.88]    [c.36]    [c.600]    [c.205]    [c.53]    [c.88]    [c.66]    [c.69]   
Компактные теплообменники Изд.2 (1967) -- [ c.17 ]




ПОИСК







© 2025 chem21.info Реклама на сайте