Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия твердых тел

    Поверхностно-активные молекулы, попадая на твердую поверхность, занимают всю свободную поверхность за счет способности перемещаться (мигрировать). Перемещаясь, молекулы проникают в микротрещины на поверхности раздела зерен, в незаполненные узлы кристаллической решетки. При этом значительно понижается свободная поверхностная энергия твердого тела, что в свою очередь приводит к облегчению пластического течения в поверхностном слое. Это действие поверхностно-активных веществ известно как эффект адсорбционной пластификации. [c.61]


    Т. е. S L и S- V. Фазовые переходы S- L (плавление) и S->V (возгонка) совершаются на поверхности твердого тела и не связаны с увеличением поверхности раздела, а следовательно, и свободной энергии. Твердое тело нельзя перегреть выше его температуры плавления или точки сублимации. [c.329]

    Если энергия адсорбции сравнима по величине с энергией связей или молярной поверхностной энергией твердого тела (или превосходит их), это может вызвать существенное изменение структуры его поверхности. Отсюда следует, что поверхность металла в процессе хемосорбции подвергается структурной перестройке. [c.183]

    Важным фактором, влияющим на эффективность противоизносного действия присадок, является снижение уровня энергии твердого тела, известное под названием адсорбционного эффекта понижения прочности (эффект Ребиндера). Различают внешний и внутренний эффекты. Внешний вызывается адсорбцией ПАВ на внешней поверхности деформируемого тела, внутренний возникает в результате адсорбции ПАВ на поверхности дефектов внутри твердого тела. Внешний эффект приводит к пластифицированию поверхности твердого тела, что при умеренных режимах трения положительно сказывается на снижении ее износа. Следует, однако, отметить, что эффект пластифицирующего действия наблюдается лишь в определенных (ограниченных) интервалах температур и скоростей деформаций. С повышением температуры адсорбционный эффект, как правило, снижается, что определяется не только уменьшением величины адсорбции, но и изменением ее характера (превращение физической адсорбции в хемосорбцию). [c.256]

    Во многих аналогичных ситуациях, когда прочность твердых тел различной природы, контактирующих с теми или иными средами, оказывается пониженной, эта объясняется уменьшением поверхностной энергии твердого тела в результате адсорбции, хемосорбции, смачивания и других физико-химических взаимодействий [254]. Такой подход, впервые предложенный П. А. Ребиндером, оказывается весьма плодотворным и при описании геологических процессов. Однако сложность природных систем и недоступность большинства из них. прямому наблюдению требует большой осторожности в выводах и тщательного учета всех взаимосвязанных факторов, от которых зависит возможность эффекта и степень его проявления. К этим факторам относятся химический состав твердого тела и среды, определяющий характер межатомных взаимодействий реальная структура (дефектность) твердого тела условия деформирования. [c.92]


    Границы зерен в горных породах определенным образом распределены по энергии. Параметры этого распределения могут быть найдены, например, по распределению углов в тройных межзеренных стыках. Зная приближенное значение межфазной энергии твердое тело — жидкость, можно оценить важную величину — долю границ, для которых выполняется условие Гиббса — Смита. Если известно напряженное состояние поликристалла, то в уравнение (5.11) можно внести дополнительные поправки с учетом распределения напряжений по отдельным границам. Такая задача была решена Д. А. Крыловым. Это позволяет перейти к решению вопроса о степени связности жидкой фазы, находящейся на границах. Эффективным аппаратом для этого служит теория протекания, которая не только дает пороговые значения концентрации проводящих элементов, но и позволяет оценить транспортные свойства гетерофазного материала на основе представлений о топологии бесконечного кластера. [c.100]

    Каждое твердое тело — металл, неметалл, кристалл и даже аморфное тело — может рассматриваться как более илн менее регулярная трехмерная решетка, образованная атомами. Каждый атом удерживается в своем положении упругими силами, которые являются функциями его положения и зависят от характеристик окружающих его атомов. Наиболее существенный вклад во внутреннюю энергию твердого тела вносится энергией тепловых колебаний атомов в решетке. Эти колебания являются трехмерными и могут быть разложены иа три независимых колебания вдоль трех осей координат. [c.189]

    Уравнение (3-5) является частным выражением закона сохранения энергии, согласно которому процесс дробления характеризуется переходом одного из видов энергии твердого тела в другой. До разрушения тело обладает потенциальной энергией, т. е. находится под действием внешних сил в состоянии упругой деформации. В результате разрушения потенциальная энергия переходит в кинетическую, причем энергия деформации превращается в тепло и рассеивается в окружающую среду. [c.53]

    Поглощение и отражение лучистой энергии твердыми телами в значительной степени зависит от состояния их поверхности гладкие и полированные поверхности обладают высокой отражательной способностью шероховатые поверхности, наоборот, обладают высокой поглощательной способностью. Наиболее высокой поглощательной способностью, близкой к абсолютно черному телу, обладает сажа, которая поглощает 90—96.% падающей на нее лучистой энергии. [c.402]

    Так как N равно числу Авогадро, то ШкТ = ЪКТ, где Я — газовая постоянная, >ЯТ — классическая тепловая энергия твердого тела, равная ТСу — произведению абсолютной температуры и теплоемкости при постоянном объеме. Это относится только к таким системам, для которых соблюдается закон Дюлонга — Пти. Строго говоря, он не соблюдается для битумов, так же как и модификации этого закона, предложенные Эйнштейном или Дебаем и верные для [c.22]

    Основываясь на уравнении (74), можно определить энергию адгезии, если известно поверхностное натяжение твердой поверхности и величина контактного угла смачивания. Свободную поверхностную энергию твердого тела определить труднее, чем свободную поверхностную энергию жидкости, поскольку твердые тела способны выдержать сдвигающее напряжение. В связи с тем, что молекулы жидкости подвижны и могут располагаться так, что внутреннее напряжение снижается, поверхностное натяжение одинаково на всей поверхности. На кристаллическом твердом теле оно одинаково [c.62]

    Пластическая деформация заметно проявляется при температуре выше температуры и становится преобладающим видом деформаций выше температуры текучести Т,. Пластические деформации не сопровождаются изменением внутренней энергии твердого тела, поэтому не исчезают и после снятия напряжения. При пластических деформациях происходит скольжение макромолекул относительно друг друга и порядок их взаимного расположения существенно изменяется. [c.41]

    При минимальной энергии взаимодействия наблюдается физическая адсорбция, обусловленная диполь-дипольными взаимодействиями Ван-дер-Ваальса. При обменном взаимодействии электронов твердого тела с частицами сорбата образуются химические связи (хемосорбция). При хемосорбции теплота сорбции примерно на порядок больше, чем при физической адсорбции. Если энергия адсорбции сравнима по величине с энергией связей или молекулярной поверхностной энергией твердого тела, то поверхность металла при хемосорбции подвергается структурной перестройке (модификации). [c.46]

    Это выражение нуждается в поправке на значение разницы поверхностных энергий твердого тела без адсорбированного слоя жидкости и с адсорбированным слоем. При обработке кокса веществами, образующими на его поверхности адсорбированные слои, можно добиться значительного уменьшения угла смачивания и его слабой зависимости от температуры (рис. 2-53). В том же направлении действует время выдержки и температура смачивания (рис. 2-54). [c.149]


    Мы рассматриваем только этот случай, поскольку поверхностную энергию твердого тела трудно определить. [c.163]

    ПОВЕРХНОСТНАЯ ЭНЕРГИЯ ТВЕРДОГО ТЕЛА [c.114]

    Повышение давления насыщенного пара над высокодисперсными частицами по сравнению с частицами крупных размеров обусловливает и некоторое понижение температуры их плавления. Например, уменьшение размера частиц салола до 8 мкм понижает его температуру плавления от 42 до 38 °С. Такие данные также позволяют составить представление о возможных значениях поверхностной энергии твердых тел. [c.195]

    Свободная энергия твердого тела 0 зависит только от температуры, поэтому при равновесии [c.99]

    Для расчета гетерогенных равновесий необходимо знать свободную энергию твердого тела. [c.231]

    Согласно (XII 1.3), свободная энергия твердого тела может быть представлена как свободная энергия Ма атомной молекулы  [c.231]

    В 1926 г. X. С. Тейлор предложил гипотезу активных центров, согласно которой степень ненасыщенности связей атома в поверхностном слое зависит от его положения в кристаллической решетке. По Тейлору, атомы поверхности обладают тем более повышенной способностью к адсорбции и катализу, чем менее связаны с другими атомами катализатора (на ребре, углу кристалла, на участке с большой кривизной и т. п.). Из этого следует, что поверхностная энергия твердого тела может меняться от точки к точке. Однако такое объяснение сложной структуры поверхности катализатора и специфичности его каталитического действия далеко от истины. [c.182]

    Рассмотрим каплю жидкости на поверхности твердого тела в условиях равновесия (рис. Рис. 8.5. Капля жид-8.5). Поверхностная энергия твердого тела, ости иа поверхности стремясь к уменьшению, растягивает каплю твердого тела по поверхности. Эта энергия выражается поверхностным натяжением твердого тела на границе с газом оз.ь Межфазная энергия оа.з стремится, наоборот, сжать каплю — уменьшить свою поверхностную энергию за счет уменьшения площади поверхности. Против растекания действуют когезионные силы внутри капли. Эта составляющая направлена от границы между твердой, жидкой и газообразной фазами по касательной к сферической поверхности капли и равна 02,1. Угол 0, внутри которого расположена жидкая фаза, называют краевым углом смачивания. Все составляющие можно выразить с помощью векторов сил. Равновесие описывается соотношением [c.289]

    Изучение смачиваемости позволяет проследить за изменением поверхностной энергии твердого тела с поляризацией. [c.216]

    Имеющиеся в литературе данные по адсорбции поверхностно активных веществ на твердых электродах гораздо менее систематизированы. Хотя силы взаимодействия между частицами данного вещества в твердом и жидком состоянии не. имеют существенных различий, все же опыт показывает, что совершенно однородна только поверхность чистого металла в жидком состоянии. Кристаллическое твердое тело не однородно, так как даже в спектроскопически чистом металле различные грани, ребра и углы кристаллов обладают неодинаковым запасом энергии. Твердые тела, кроме того, обычно шероховаты. В общем случае на неполированной поверхности поверхностное натяжение в разных точках твердого тела имеет различную величину. [c.343]

    Мерой избыточной свободной энергии поверхности может служить ее пересыщение — изменение свободной энергии при переходе ог заданного системе состояния к устойчивому, равновесному при данных условиях. Избыточная свободная энергия твердого тела непосредственно не используется и не проявляется в катализе. Она служит предпосылкой образования определенных структур, обладающих желательными свойствами, в том числе каталитическими. Являясь термодинамически неустойчивыми при одних условиях, [c.136]

Таблица IX.I. Поверхностная энергия твердых тел Таблица IX.I. <a href="/info/3838">Поверхностная энергия</a> твердых тел
    Важную, хотя и трудноразрешимую, задачу представляет измерение поверхностной энергии твердых тел. Трудности связаны с тем, что для твердых тел, как правило, не удается реализовать термодинамически обратимое увеличение поверхности раздела фаз, в частности из-за больших необратимых затрат энергии на пластическое деформирование. Тем не менее к настоящему времени разработано несколько методов, позволяющих измерять поверхностную энергию твердых тел (или хотя бы оценивать ее). [c.41]

    Перейдем теперь к другой крупной задаче изучению роли физикохимического взаимодействия сплошных твердых тел со средой в процессах деформации и разрушения. Сюда относятся открытые Ребиндером разнообразные эффекты облегчения пластического течения и понижения прочности твердых тел вследствие обратимого физико-химического влияния среды — понижения удельной свободной поверхностной энергии твердых тел и, как следствие этого, уменьшения работы образования новых поверхностей в процессах деформации и разрушения. Отличительные особенности этих явлений, получившие в мировой научной литературе название эффект Ребиндера, заключаются в том, что они, как правило, наблюдаются при совместном действии среды и определенных механических напряжений, когда понижение поверхностной энергии не влечет само по себе развития новой поверхности, но лишь помогает действию внешних сил [c.332]

    Вместе с тем понижение поверхностной энергии твердого тела происходит не только при адсорбции паров в такой же или еще в большей мере оно имеет место и ири капиллярной конденсации с непрерывным переходом к контакту твердого тела с объемной жидкой фазой соответственно эффекты снижения прочности твердых тел в результате понижения их поверхностной энергии при контакте с жидкой фазой также обычно включаются в обобщенное понятие адсорбционного понижения прочности. [c.336]

    Высокую удельную поверхность сырого катализатора трудно сохранить при прокаливании. Убыль свободной поверхностной энергии твердого тела термодинамически обусловлена. Твердые вещества с высокой удельной поверхностью всегда спекаются. Скорость этого процесса зависит от температуры, газовой среды, физических и химических свойств твердого вещества. Прп достаточно низких тедшературах скорость спекания незначительна. В за-впсимости от механизма спекания скорость нагрева по-разному влияет на катализатор. Если при прокаливании образуется жидкая фаза, то быстрый нагрев может предотвратить быстрое спекание. При медленном нагреве жидкость, покрывая частицы, способствует пх уплотнению. Медленный нагрев может понизить скорость спекания и в тех случаях, когда спекание определяется диффузией в твердой фазе. При низких температурах медленный нагрев позволяет за счет поверхностной диффузии снизить кривизну шеек между частицами, а это уменьшает движущую силу спекания при температурах, при которых лимитирующей стадией становится диффузия в объеме. [c.124]

    Кузнецов В. Д., Поверхностная энергия твердых тел, Гостехтеорет-издат, 1954. [c.257]

    Высокую удельную поверхность сырого катализатора трудно сохранить при прокаливании. Убыль свободной поверхностной энергии твердого тела термодинамически обусловлена. Поэтому твердые вещества с высокой удельной поверхностью всегда спекаются. Скорость этого процесса зависит от температуры, газовой среды, физических и химических свойств твердого вещества. При достаточно низких температурах скорость спекания незначительна. Обычно спекание начинается с поверхностной диффузии и резко ускоряется, когда температура поверхностп достигает одной трети абсолютной температуры плавления. По мере повышения температуры, как правило, происходит смена лимитирующей стадии спекания — с диффузии по границам зерен на диффузию в объеме решетки. Взаимная ориентировка частиц и пористая структура сильно изменяются. При еще более высоких температурах большое значение приобретают процессы испарения и конденсацпи. [c.26]

    Поверхностная энергия твердого тела, в особенности кристаллов, зависит от расположения частиц под любой из граней, от способа упаковки молекул. Поэтому даже для одного кристалла или зерна условия смачиваемости по различным поверз ностям неоднозначны. Следовательно, даже для идеального однородного  [c.207]

    Катионы расположены в порядке их возрастающей поляризуемости. Так как обменная реакция между глиной и солями металлов обратима, результаты могут рассматриваться только как качественные. Тем не менее они указывают на то, что с ростом поляризуемости адсорбированного катиона начальный контактный угол возрастает и что на глине, обработанной солями свинца и ртути, он приближается к контактому углу для поверхности, обработанной лаурил-амииом. Это можно объяснить снижением свободной поверхностной энергии твердого тела в результате поляризации ионов и поверхность становится более нейтральной. [c.67]

    В тех случаях, когда было необходимо увеличить выход иро-дук1 ов химической реакции за единицу времени в гетерогенных системах, изменяли температуру, размер и форму зерен, а также величи[1у контактируюи1ей поверхности. Применительно к каталитическим реакциям использовался также метод введения в кристаллическую решетку примесей или создания мея фа-зовых границ путем чисто механического смешения со специальными добавками (смешанные катализаторы). Как в случае катализа, так и при обычных химических реакциях, за исключением фотохимических, в строгом понимании этого слова, никто, по-видимому, не предполагал, что существует возможность изменения других форм энергии твердого тела, кроме теиловог энергии. [c.10]

    Самое малое поверхностное натяжение оказывается у сжиженных инертных газов, симметричные молекулы которых обладают ничтожной поляризуемостью. Поверхностное натяжение органических жидкостей возрастает с увеличением их полярности, Обращает на себя внимание большая величшш поверхностного натяжения воды по сравнению с другими жидкостями. Это связано со склонностью воды к образованию водородных связей. Еще выше поверхностное натяжение расплавленных солей и металлов, для которых характерна ионная связь. Поверхностная энергия твердых тел, определенная косвенными методами, оказалась существенно большей, чем в случае жидкостей. [c.190]

    Для изученид поверхностной энергии твердых тел, в том числе металлов, широко используется метод нулевой ползучести , впервые [c.29]

    Для определения поверхностной энергии твердых тел используют также зависимость растворимости от размера частиц с привлечением уравнения Томсона (Кельвина). Однако существенное ограничение на применение этого метода накладывает то обстоятельство, что повышенная растворимость частиц, полученных при механическом измельчении, связана также с появлением в них многочисленных дефектов упругих и неупругих иокажений решетки в результате механического воздействия. [c.42]

    Важную, хотя и трудноразреши1 1ую задачу представляет измерение поверхностной энергии твердых тел. Трудности связаны с тем, что для твердых тел, как правило, не удается реализовать 48 [c.48]


Смотреть страницы где упоминается термин Энергия твердых тел: [c.66]    [c.25]    [c.304]    [c.190]    [c.377]    [c.37]    [c.99]    [c.138]    [c.341]    [c.49]   
Прочность и разрушение высокоэластических материалов (1964) -- [ c.35 , c.36 , c.38 ]

Физическая химия Книга 2 (1962) -- [ c.242 ]




ПОИСК







© 2025 chem21.info Реклама на сайте