Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вихревое движение

    Вследствие затраты тепла па реакции крекинга температура в рабочей зоне реактора с нисходящим сплошным слоем частиц катализатора понижается по ходу движения крекируемого потока. В реакторах, где частицы катализатора находятся в беспорядочном вихревом движении (крекинг в кипящем слое), происходит выравнивание температур. В таких реакторах температуры в разных точках слоя катализатора отличаются мало. Однако и в этом случае крекинг углеводородов протекает с поглощением тепла. [c.20]


    Увеличение скорости распространения фронта пламени с ростом турбулентности горючей смеси происходит также вследствие искривления и увеличения поверхности фронта пламени и имеет очень важное значение для обеспечения нормального сгорания смеси в двигателе при различных числах оборотов. С увеличением числа оборотов непрерывно уменьшается время, отведенное на процесс сгорания смеси в двигателе. Одновременно усиливается вихревое движение смеси за счет увеличения скорости поступления смеси через впускной клапан, что приводит к росту скорости распространения пламени. Влияние турбулентности рабочей смеси на скорость распространения фронта пламени [19] показано ниже  [c.56]

    Скорость смеси вихревых движений Скорость распро- [c.56]

    Было показано, что движение пузырей зависит от степени упорядоченности ожижающего агента. Если плотность последнего невелика, то тяжелые твердые частицы, обладающие большой инерцией, легко гасят любую турбулентность в потоке ожижающего агента, способствуя возникновению его упорядоченного движения, а значит и образованию пузырей. Наоборот, если плотность твердых частиц лишь немногим превышает плотность ожижающего агента, то турбулентность в последнем будет только способствовать хаотическому вихревому движению твердых частиц, типичному для жидкостных систем. Пузыри не могут существовать в такой неупорядоченной системе, так как для создания [c.165]

    Конструкция АГГ разработана на принципиально новой теоретической основе с применением акустического резонатора, создающего мощный вихревой эффект смешения топливного газа с атмосферным воздухом. Сочетание враш,ательного и поступательного движения газовоздушной смеси приводит к появлению зоны осевых обратных токов, росту центробежных сил, интенсивному перемешиванию компонентов и пропорциональному распределению газа в объеме окислителя. На выходе из горелки вихревым движением смеси создаются большой угол раскрытия зоны горения и настил пламени на излучающую стенку огнеупорной кладки топки с малой осевой дальнобойностью, а наличие зоны разрежения по оси закрученного потока способствует возникновению встречного высокотемпературного потока дымовых газов из топки, который стабилизирует фронт настенного горения (иначе называемого настильное сжигание топлива ).  [c.65]

    Для улучшения массообмена с некоторых экстракционных колоннах применяются мешалки. Они увеличивают турбулентность в сплошной фазе н дробят капли диспергированной фазы, увеличивая таким образом поверхность контакта фаз. Действие мешалок должно обеспечивать перемешивание жидкостей в горизонтальных тонких слоях с исключением интенсивных вихревых движений в направлении оси колонны, так как последнее снижает эффективность работы экстракционной колонны. [c.344]


    Исследования показали, что при кольцевом (периферийном) вводе потока в аппарат движение жидкости значительно сложнее, чем при обычном боковом. Струя, поступая в кольцо и взаимодействуя со стенкой корпуса аппарата, разделяется на две части, обтекает эту стенку и устремляется по инерции в противоположный конец кольца. Отсюда через щели в стенке корпуса аппарата она выходит в его полость. При этом создаются условия для двойного винтового (вихревого) движения (рис. 8.8, а). В результате распределение скоростей по сечению рабочей камеры аппарата получается неравномерным М = 1,8-н2, табл. 8.3). Закручивание потока столь значительное, что сохраняется даже после установки в начале рабочей камеры плоской решетки. Поэтому и за решеткой неравномерность распределения вертикальных составляющих скоростей не устраняется (Л4 = = 1,5ч 2,0). Только после наложения на плоскую решетку спрямляющего устройства в виде ячейковой решетки, устраняющей закручивание потока, достигается практически полное выравнивание скоростей по всему сечению (М = 1,08ч-1,10). Опыты показывают, что установка одного спрямляющего устройства без плоской решетки неэффективна (см. рис. 8.8, б), так как вследствие малого сопротивления это устройство не может выравнять скорости по величине. [c.213]

    Материал при вихревом движении в реакционной камере в основном располагается по стенкам реактора. Слой материала, подходя к верху реакционной камеры, упирается в подпорную диафрагму. При этом какая-то часть материала с горячими газами выносится из нее в осадительную камеру, остальная масса сепарируется к ее стенкам и уплотненной массой снова сползает в нижнюю зону реактора. [c.107]

    Материал вместе с газами из реактора поступает в-осадительную камеру, где предусмотрена сепарация газов от твердых частиц. В осадительную камеру материал с газами вводится при вихревом движении, поэтому это движение используется для отделения продуктов от газовой фазы  [c.107]

    В соответствии с теорией межфазной турбулентности предполагается, что на границе раздела фаз имеются интенсивные турбулентные пульсации, которые приводят к возникновению вихревого движения, сопровождающегося взаимным проникновением вихрей-в обе фазы. Количественный учет межфазной турбулентности может быть произведен с помощью безразмерного фактора гидродинамического состояния двухфазной системы. На основе теории межфазной турбулентности получены выражения локальных коэффициентов массоотдачи для различных гидродинамических режимов движения потоков, отличающиеся показателем степени нри коэффициенте диффузии, который изменяется от нуля в режиме развитой турбулентности до 2/3 в ламинарном режиме. Кроме того, вводятся факторы, зависящие от гидродинамической структуры и физических характеристик фаз. [c.344]

    Вращательное движение частиц жидкости называется вихревым движением жидкости. [c.99]

    ВОЗНИКНОВЕНИЕ ВИХРЕВОГО ДВИЖЕНИЯ В ЖИДКОСТИ [c.99]

    ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДВИЖЕНИЯ ЖИДКОСТИ С УЧЕТОМ ВРАЩЕНИЯ ЧАСТИЦ И ОСНОВНЫЕ ЗАКОНОМЕРНОСТИ ВИХРЕВЫХ ДВИЖЕНИЙ [c.102]

    Таким образом, вихревое движение жидкости формализуется полем векторных величин, которое представляет собой поле угловых скоростей вращения частиц жидкости, находящихся в рассматриваемой части пространства, заполненного жидкостью. [c.105]

    О СВЯЗИ МЕЖДУ ВИХРЕВЫМ ДВИЖЕНИЕМ И ТУРБУЛЕНТНОСТЬЮ [c.114]

    В газо-жидкостной эмульсии на поступательное движение газа, движущегося с большой скоростью, превосходящей в несколько раз скорость всплывания пузырька, накладываются вихревые движения. В результате происходят массовые столкновения пузырьков и струй газа, сопровождающиеся их слиянием и разбиванием, переходом от пузырьков к вихревым струям и обратным образованием пузырьков. При этом жидкость может растягиваться в тончайшие пленки, затем снова собираться в капли или слои, снова растягиваться в пленки и т. п. [c.141]

    На основании теории вихревого движения можно принять, что в сравнимых точках турбулентного потока, не ограниченного твердой стенкой, возникают вихри равной величины с одинаковыми скоростями циркуляции. Поскольку массообмен происходит на свободных поверхностях фаз и допускается турбулентная природа обмена, то перепад давления в двухфазной системе, который характеризует интенсивность образования вихрей, должен быть взят с учетом лишь той энергии, которая затрачивается на взаимодействие между потоками. [c.148]

    Развитие вихревого движения приводит к интенсивному поперечному переносу, к развитию турбулентности и, следовательно, интенсивному перемешиванию в потоке. В то же время для осуществления процессов массопередачи необходимо наличие градиента концентраций вдоль потока от входа до выхода нз аппарата, которые должны непрерывно изменяться. Интенсивное перемешивание в турбулентном потоке вызовет и продольное перемешивание, что снизит продольный градиент концентраций и ухудшит разделение. Чем больше будет коэффициент вихревой диффузии тем больше будет влиять эффект перемешивания. В этом смысле коэффициент служит характеристикой интенсивности перемешивания в диффузионных процессах. [c.197]


    Принцип работы сепараторов. Под сепарацией понимают разделение материалов по крупности частиц в потоке газа. Сепарация основана па различии скоростей движения крупных и мелких частиц в среде газа под действием массовых сил (силы тяжести и центробежной). В настоящее время в промышленности применяют сепараторы двух основных типов воздушно-проходные, в которых вихревое движение создается воздушным потоком, и циркуляционные, [c.208]

    Смешивание осуществляется серией попеременных подач воздуха и пауз, осуществляемых автоматическим регулятором, рассчитанным на периоды времени 1 2 и 3 сек. Сжатый воздух создает вихревое движение материала, который по спирали поднимается вдоль стенок резервуара, после чего опускается по меньшей спирали, расположенной внутри первой. В течение 16—60 сек может быть смешано от 0,03 до 70 материала. Готовая смесь разгружается при подъеме конического клапана 4, расположенного на дне. Остатки материалов быстро удаляются несколькими короткими продувками воздуха. Потери через сепаратор составляют меньше 0,5—1% и, если необходимо, могут быть совсем исключены путем перевода их обратно [c.33]

    Выполнение неравенства соответствует вихревому движению пара в пленке. Коэффициент теплоотдачи при этом режиме рассчитывается по эмпирической формуле  [c.236]

    На рис. У-24 показаны полученные [193] поля коэффициентов продольной турбулентной диффузии (а) и поперечной диффузии жидкости (б) в барботажном слое. Видно, что поля п.т и Епоп подобны они имеют максимальное значение при безразмерном радиусе p = r/i лi0,6 и минимальное — у стенок аппарата. Это показывает, что интенсивность вихревых движений жидкости максимальна на границе между восходящими и нисходящими потоками, хотя средняя ее скорость здесь равна нулю. Заметим, что для [c.196]

    Испаряемость топлив в дизельных двигателях имеет меньшее эксплуатационное значение, чем испаряемость бензинов в карбюраторных двигателях. Это связано, в первую очередь, с тем обстоятельством, что в дизельном двигателе смесеобразование происходит при очень высокой температуре в конце такта сжатия воздуха. На испарение топлива в быстроходном дизеле отводится 0,6-2,0 мс. Чтобы топливо за это время испарилось, размер капель его должен бьггь в пределах 10-20 мкм с уменьшением диаметра капель возрастает скорость их нагрева. Полнота испарения топлива в двигателе зависит от температуры, вихревого движения воздуха в камере сгорания, качества распьшивания и испаряемости топлива. [c.83]

    Непосредственный впрыск топлива в полость цилиндра, в особую предкамеру или воздухоподводящий трубопровод осуществляется в тактах впуска или сжатия через форсунку с помощью специального насоса. На испарение топлива при непосредственном впрыске отводится меньшее время. Факторами, ускоряющими испарение, являются усиленное вихревое движение воздуха и вы o aя температура внутри цилиндра. [c.32]

    В двигателях внутреннего сгорания наполнение рабочей смесью происходит с большими скоростями создается сильное вихревое движение, которое частично сохраняется и в период сжатия. В этих условиях горение носит турбулентный характер и скорость распространения пламени заметно возрастает — до 10—40 м1сек. [c.56]

    Отстойники с продольными пёрегородками предназначаются для ус ане-ния вихревого движения в аппарате. В эксплуатации они неудобны и ве получили распространения на заводах.  [c.277]

    Наверху печи установлена раскручивающая улитка для преобразования вихревого движения газа в прямолинейное. В раскручива-теле часть энергии вихревого движения газов преобразуется в статический напор, который используется для преодоления сопротивления газоочистных установок, что позволяет уменьшить расход электроэнергии на подачу воздуха в печь. К боковой стенке реакционной камеры примыкает наклонный под для спуска продуктов в приемный бункер. [c.107]

    ПО патрубку поступает в перфорированный наконечник 11. Из него газ распределяется по всему сечению трубы и смешивается с воздухом. Горючая смесь, двигаясь одновременно поступательно и враща-тельно, интенсивно перемешивается и, соприкасаясь со смесительной трубкой 2, подогревается до температуры воспламенения. Затем, попадая в камеру сгорания 4, горючая смесь воспламеняется и полностью сгорает. Продукты сгорания, выходящие из горелки, имеют вихревое движение, что ускоряе1 их барботаж в жидкости и предотвращает возможное зарастание выходного отверстия. [c.367]

    Вихревое движение наблюдается в тех топках, где втекающая струя или движущийся основной поток отрывается от стенки вследствие аэродинамической необтекаемой конфигурации камер горения или смешения. Вихри возникают в результате наличия местных зон с повышенным или пониженным давлением, захватывая застойные пространства, незанятые основной проточной частью газовоздушного [c.73]

    Пренмуществеииое влияние того или иного механизма определяет ся гидродинамической обстановкой процесса. Механизм переноса в пре делах каждой фазы непосредственно связан с гидродинамикой одно фазного потока, механизм же переноса через поверхность раздела фаз — с гидродинамикой двухфазного потока. Поэтому прн макропереносе вещества важное значение приобретает вихревое движение жидкости, так как вихри являются переносчиками энергии и вещества в потоке. Анализ вихревого движения жидкости объясняет механизм перемещения частиц и многие факты, наблюдаемые в процессах переноса массы. [c.90]

    При движении однофазного потока (за счет вязкости жидкости) по сечению потока образуется сдвиг одного слоя жидкости относительно другого п возникают силы, направленные перпендикулярно течению, что может повести к образованию вихревого движения жидкости. Таким образом, вязкость является источником вихревого движения л ндкости. Следовательно, вихревое движение жидкости может возникать лишь в реальных вязких жидкостях. [c.99]

    Уравнения (II, 53) выведены проф. Казанского университета И. С, Гро-мека в 1882 г, и называются уравнениями вихревого движения Громеки, [c.104]

    В реальных лсидкостях принцип сохранения вихрей переходит в прпнцип устойчивости форм вихревого движения. Во всех практических случаях внхрн обладают значительной устойчивостью. [c.108]

    Для смешивания жидкостей фирмой АзЬЬгоок Согр. запатентован вихревой смеситель, также не имеющий движущихся рабочих частей (рис. 15). Смеситель работает следующим образом. Первая жидкость поступает тангенциально по трубе 1 в смесительную камеру, получает вихревое движение по внутренней стенке трубы 2. При достаточной скорости потока вихрь распространяется на всю длину трубы, создает разрежение и засасывает вторую жидкость, поток которой направлен вниз по центральной трубе 3, почти не смешиваясь с первым потоком жидко- [c.29]

    В работе [High,1968] характер процесса образования огневого шара из ракетного топлива описывается следующим образом "В огневых шарах, связанных со взрывами ракетного топлива, по мере того как давление продуктов детонации уменьшается до атмосферного давления, плотность газа становится значительно меньше плотности окружающего воздуха, и поэтому результирующая выталкивающая сила заставляет газ подниматься. При этом вся масса ракетного топлива вовлекается в огневой шар и быстро сгорает. Полусферическая форма огневого образования сохраняется до тех пор, пока сила плавучести невелика. Однако после того, как сфера окончательно сформировалась, огневой шар отрывается от земли. Воздух, вовлекаемый в огневой шар, посредством конвективных сил и вихревого движения непрерывно добавляется в него и увеличивает массу горящего образования. При разлитом на земле ракетном топливе формируется ножка, соединяющая огневой шар и разлитие, при этом все огневое образование принимает характерную грибовидную форму (такую же, как и огневой шар ядерного взрыва). Этот горячий огневой шар продолжает изменяться и превращается в сплющенный сфероид и в конечном итоге - в тороид. Горение богатой топливом смеси газа и вовлеченного воздуха продолжается до тех пор, пока не образуется стехиометрическая смесь, после чего вовлеченный воздух разбавляет и охлаждает газы. Радиационные потери также вносят вклад в [c.154]


Смотреть страницы где упоминается термин Вихревое движение: [c.69]    [c.87]    [c.23]    [c.21]    [c.501]    [c.502]    [c.346]    [c.101]    [c.141]    [c.197]    [c.229]    [c.348]    [c.60]    [c.126]   
Справочник по гидравлическим расчетам (1972) -- [ c.22 ]

Основные процессы и аппараты химической технологии Издание 5 (1950) -- [ c.37 , c.215 ]

Основные процессы и аппараты химической технологии Издание 6 (1955) -- [ c.34 , c.265 ]

Жидкостные экстракторы (1982) -- [ c.49 ]

Справочник по гидравлическим расчетам Издание 5 (1974) -- [ c.4 , c.22 ]




ПОИСК







© 2025 chem21.info Реклама на сайте