Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

АТРазный комплекс

    Важно отметить, что АТРазный комплекс может не только утилизировать ТЭП с образованием АТР, но и формировать его за счет гидролиза АТР, осуществляя таким образом взаимное превращение этих двух форм энергии. [c.44]

    В состав ламелл хлоропластов входят пять многокомпонентных белковых комплексов светособирающий комплекс, фотосистемы I и II, цитохромный комплекс, включающий цитохромы и /, и АТРазный комплекс, участвующий в синтезе АТР. Все они функционируют, взаимодействуя друг с другом. [c.79]


    Светособирающий комплекс и пигмент-белковый комплекс ФС II находятся в основном в мембранах, плотно контактирующих друг с другом, причем ССК играет особую роль в адгезии тилакоидных мембран (рис. 3.12). Показано, что у мутанта хламидомонады, лишенного белка, с которым связан хлорофилл Ь, граны не образуются. ФС I со своим светособирающим комплексом преимущественно, а АТРазный комплекс (Ср1 + СРо), как правило, находятся на несостыко-ванных участках мембран. Комплекс цитохромов — / равномерно распределен как в состыкованных, так и в несостыко-ванных мембранах. Такое распределение белковых комплексов, участвующих в световой фазе фотосинтеза, ставит вопрос о способе их взаимодействия. Показано, что это взаимодействие осуществляется с помощью легкоподвижного липофильного пластохинона PQ в липидной фазе и благодаря перемещению водорастворимого пластоцианина вдоль внутренних поверхностей ламелл и водорастворимого ферредоксина вдоль их наружных поверхностей. [c.89]

    Механизм синтеза АТР. Сопряжение диффузии протонов назад через внутреннюю мембрану митохондрии с синтезом АТР осуществляется с помощью АТРазного комплекса, получившего название фактора сопряжения р1. На электронномикроскопических снимках эти факторы выглядят глобулярными образованиями грибовидной формы на внутренней мембране митохондрий, причем их головки выступают в матрикс (см. рис. 4.7). 1 — водорастворимый белок, состоящий из 9 субъединиц пяти различных типов. Белок р1 представляет собой АТРазу и связан с мембраной через другой белковый комплекс Fo, который перешнуровывает мембрану. Fo не проявляет каталитической активности, а служит каналом для транспорта ионов Н через мембрану к [c.159]

    Гены митохондрий и хлоропластов. участвующие в поддержании их структуры и функций, распределены между ядерной ДНК и ДНК органелл. Более того, у разных организмов одни и те же гены могут быть в одном случае цитоплазматическими, а в другом - ядерными. Например, ген, кодирующий субъединицу 9 митохондриального АТРазного комплекса, у S. erevisiae находится в митохондриях, а у грибов и у человека - в ядре. Если следовать гипотезе эндосимбиоза буквально, то все важные в структурном и функциональном отношении гены митохондрий и хлоропластов должны оставаться в геноме органелл-потомке исходной прокариотической ДНК. Почему у современных организмов многие из этих генов обнаруживаются в ядерных хромосомах Одно из объяснений, подкрепленное [c.225]

    А. Сент-Дьерди [88 Ь, с] показал, что для стимулируемого ионами Mg + гидролиза АТР (АТРазная активность) необходим комплекс двух белков— актина и миозина (актомиозин). Он обнаружил также явление [c.323]

    МОЖНО воспользоваться кинетическими данными. Константы стабильности М -нуклеотидных и Са-нуклеотидных комплексов почти идентичны, но распад Са +-комплексов происходит в 1000 раз быстрее, чем соответствующих М +-комплексов [762]. Не кальций, а магний, полураспад АТР- и АОР-комплексов которого имеет порядок миллисекунд, был избран для подавления АТРазной активности миозина в состоянии расслабления мышцы и для проведения относительно медленных конформационных изменений (/1/2 > 1 мсек), которые происходят на стадиях каталитического действия АТРазы актин-активированного миозина, равно как и некоторых других ферментов [758]. [c.288]


Рис. 7.11. Модель митохондриальной АТР-синтетазы (продольный участок). Протонный ток через мембранный ионофор, так называемая Ро-фракция, способствует синтезу АТР из АВР и Рг (см. рис. 7.10) в головке (Р[) белкового комплекса Р] — белок, который в выделенном состоянии обладает АТРазной активностью. Механизм синтеза еще не выяснен, а функция субъединиц весьма гипотетична [14]. р1 имеет четвертичную структуру азРз- Рис. 7.11. Модель митохондриальной АТР-<a href="/info/85635">синтетазы</a> (продольный участок). Протонный ток через <a href="/info/327339">мембранный ионофор</a>, так называемая Ро-фракция, способствует синтезу АТР из АВР и Рг (см. рис. 7.10) в головке (Р[) <a href="/info/166574">белкового комплекса</a> Р] — белок, который в выделенном состоянии обладает <a href="/info/32647">АТРазной активностью</a>. <a href="/info/1897001">Механизм синтеза</a> еще не выяснен, а функция субъединиц весьма гипотетична [14]. р1 имеет <a href="/info/97747">четвертичную структуру</a> азРз-
    Имеются примеры ионных регуляторных комплексов, в которых рецептор и ионный канал, по-видимому, находятся в разных молекулах. Так, некоторые ацетилхолиновые рецепторы, найденные в нейронах Aplysia, после связывания с ацетилхолином увеличивают натриевую проводимость. Другие ацетилхолиновые рецепторы того же организма вызывают быстрое возрастание проводимости ионов хлора, тогда как третьи — медленное возрастание калиевой проницаемости [6]. Если принять, что связывающий компонент этих рецепторов один и тот же, что никак не доказано, то он должен действовать в комбинации то с калиевыми, то с натриевыми, то с хлорными каналами [7]. Хотя такие комбинации и казались постоянными, следующие наблюдения привели к выдвижению гипотезы плавающего , или мобильного , рецептора. Согласно этой гипотезе рецепторы не связываются в постоянные комплексы, а плавают в мембране и взаимодействуют с различными активными структурами транспортными системами, ферментами и т. д. (рис. 9.6). Имеется, например, только один тип рецептора для инсулина, который, однако, раздельно регулирует целый ряд мембранных функций транспорт глюкозы, аденилатциклазную, фосфодиэсте-разную, Ка+,К+-АТРазную, Са +-ЛТРазную активности, а также транспорт аминокислот. Напротив, в жировых клетках крыс имеются, по крайней мере, восемь различных рецепторов, и все они регулируют аденилатциклазную активность. Связывание [c.255]

    Взаимодействие между миозином и актином, на котором основано превращение химической энергии в механическую энергию в мышце, изучено Боттомлн и Трейером [138]. Исследовалось влияние ионной силы на специфическое и обратимое связывание тяжелого меромиозина и миозинового субфрагмента 1 на сефарозе с иммобилизованным G-актином. Комплексы, образуемые между производными миозина и иммобилизованным G-актином, могут диссоциировать при низких концентрациях АТР и ADP и пирофосфатов как в ирисутствии, так и в отсутствие Mg +. Кроме того, и связанный с сефарозой, и свободный G-актин лишь немного увеличивают Мд-+-стимулируемую АТРазную активность миозина. Такой подход позволяет решить вопрос, обязательно ли комилек-сообразование между миозином и актином приводит к активации АТРазы. [c.376]

    ДНК-полимераза гена 43 обладает обычной 5 —З -синтетической активностью, связанной с 3 —З -экзонуклеазной корректирующей активностью (гл. 32.) Оставшиеся три белка отнесены к полимеразным вспомогательным белкам . Продукт гена 45 является димером. Продукты генов 44 и 62 образуют прочный комплекс, который характеризуется АТРазной активностью и тем, что он увеличивает скорость движения ДНК-полимеразы в 3 раза, от 250 до примерно 800 нуклеотидов/с последнее значение близко к скорости движения ДНК-полимеразы in vivo ( 1000 нуклеотидов/с). Увеличение в скорости не зависит от того, используется одно- или двухцепочечная матрица. В тех случаях, когда ДНК-полимераза фага Т4 работает на одноцепочечной матрице ДНК, скорость ее движения непостоянна. Фермент быстро передвигается в пределах одноцепочечных областей, однако при прохождении через области, имеющие вторичную структуру, образуемую спарившимися внутри цепи основаниями, движение его замедляется. Прохождению ДНК-полимеразы через такие участки способствуют вспомогательные белки. Их роль заключается в увеличении скорости репликации в трудных областях и, следовательно, в поддержании равномерности движения ДНК-полимеразы. Присутствие белков увеличивает сродство ДНК-полимеразы с ДНК, а также ее способность удерживаться на матричной молекуле без диссоциации. Возможно, что белки действуют как зажим , удерживая ДНК-полимеразную субъединицу на матрице более прочно. Для такого эффекта необходимо совместное действие всех трех белков. Подобный тип взаимоотношений оставляет открытым вопрос о том, что является компонентом ДНК-полимеразы, а что-вспомогательным фактором. [c.428]

    Хотя миозин есть практически во всех эукариотических клетках, стабильные толстые филаменты он образует только в сердечной и скелетных мышцах. Молекулы миозина в немышечных клетках собраны в меньшие комплексы в зависимости от обстоятельств размеры и местоположение этих сократительных систем определяются внутриклеточными сигналами. Важным фактором, регулирующим степень агрегации миозина, служит его фосфорилирование киназой легких цепей, которое влияет не только на АТРазную активность миозина, но также на его форму и способность к самосборке. [c.270]

    Диненн - это крупный белковый комплекс, содержащий две или три (в зависимости от источника) глобулярные головки, соединенные с общим основанием тонкими гибкими нитями (рис. 11-57). Каждая глобулярная головка обладает АТРазной активностью, которая усиливается примерно в шесть раз нри ассоц,иац,ии с микротрубочкой. Вся динеиновая ручка состоит из одной молекулы динеина Кинетические исследованггя [c.297]


    Когда миозин гладких мышц связывается с F-актином в отсутствие других мышечных белков, таких, как тропомиозин, образующийся комплекс лишен заметной АТРазной активности. Это резко отличается от ситуации, характерной для взаимодействия с F-актином миозина поперечнополосатых мышц, когда регистрируется высокая активность АТРазы. Миозин гладкой мускулатуры содержит легкую цепь (р-легкую цепь), предотвращающую связывание миозиновых головок с F-актином. Для того чтобы эта легкая цепь не препятствовала активации миозиновой АТРазы при взаимодействии с F-актином, она должна предварительно подвергнуться фосфорилированию. Фосфорилирование легкой цепи р запускает процессы ассоциации— диссоциации в сократительном цикле гладкой мускулатуры. [c.338]

    ПО Т-трубочкам, саркоплазматический ретикулум выбрасывает в цитозоль большие количества ионов Са , что посредством вспомогательных мышечных белков поддерживает нужное расположение активных миозиновых филаментов и тем самым инициирует сокращение мио-фибрилл. В гладких мышцах изменение концентрации ионов Са +, помимо влияния гормонов, определяется также Са-связывающим белком -кальмодулином. В комплексе с Са + он активирует киназу легких цепей миозина. Образовавшийся тройной комплекс индуцирует каскад реакций сокращения мышц (рис. 1.36). Сигнал от мембраны мышечной клетки через Т-трубочки и саркоплазматический ретикулум доходит до саркомеры за несколько миллисекунд, поэтому все миофибриллы мышечной клетки сокращаются практически одновременно. Связь мышечного сокращения с изменениями концентрации Са " обусловлена функциями вспомогательных белков тропомиозина и тропонина, ассоциированных с актиновыми филаментами (рис. 1.32). Они участвуют в регуляции мышечного сокращения ионами Са + и тем самым делают АТРазную активность миозина чувствительной к концентрации этих ионов. [c.129]

    Обычно существование генетической системы в энергетических органеллах объясняют тем, что некоторые из синтезируемых внутри органеллы белков слишком гидрофобны, чтобы пройти сквозь митохондриальную мембрану извне. Однако изучение АТР-синтетазного комплекса (рис. 9-72) показало, что такое объяснение неправдоподобно. Хотя отдельные белковые субъединицы АТР-синтетазы весьма консервативны в ходе эволюции, места их синтеза изменяются. В хлоропластах несколько довольно гидрофильных белков, в том числе четьфе из пяти субъединиц р1-АТРазной части комплекса, образуются на рибосомах внутри органеллы. Напротив, у гриба Меигозрога и в животных клетках весьма гидрофобный компонент (субъединица 9) мембранной части АТРазы синтезируется на рибосомах цитоплазмы и лишь после этого переходит в органеллу. Различную локализацию генов, кодирующих субъединицы функционально эквивалентных белков у разных организмов (рис. 9-72), трудно объяснить с помощью какой бы то ни было гипотезы, постулирующей определенные эволюционные преимущества современных генетических систем митохондрий и хлоропластов. [c.68]

    Гидролиз АТР во время мышечного сокращения-это прямой результат взаимодействия миозина с актином. Сам по себе миозин тоже обладает свойствами АТРазы, т.е. фермента, способного гидролизовать АТР однако АТРазная активность очищеннопо миозина невелика для гидролиза одной молекулы АТР молекуле фермента требуется около 30 с. Этапом, лимитирующим скорость реакции, является не связывание молекулы АТР и не собственно гидролиз (обе эти стадии протекают чрезвычайно быстро), а освобождение продуктов гидролиза-ADP и неорганического фосфата, которые остаются прочно связанными с миозином в нековалентный комплекс и препятствуют началу следующего каталитического акта. [c.81]

    Формирование гликолитического метаболона на мышечных филаментах физиологически оправдано, поскольку такое рас положение метаболона обеспечивает поступление АТР, продуцируемого гликолитической системой, на АТРазные активные центры, расположенные на головках молекулы миозина. В качестве подложки для формирования комплекса ферментов гликолиза в мышцах рассматриваются молекулы актина [28, 61] и миозина [11]. [c.182]

    В цитоплазме клеток растений обнаружены немышечные актин и миозин (см. 1.1.2). Движущая сила тока цитоплазмы в клетках нителлы возникает на границе раздела фаз между эктоплазмой (где локализованы микротрубочки), находящейся в состоянии геля, и эндоплазмой в состоянии золя. С помощью электронной микроскопии в этой зоне обнаружены субкортикальные фибриллы, направленные в сторону движения цитоплазмы. Каждая фибрилла состоит из 50-100 микрофиламентов диаметром 5 — 6 нм, состоящих из Ф-актина. Нарушение структуры микрофиламентов (обработка клеток цитохалази-ном В) прекращает движение. Актиновые филаменты фукцио-нируют в комплексе с миозином эндоплазмы, который обладает АТРазной активностью. Предполагается, что движущую силу цитоплазмы обусловливают и взаимодействия актиновых [c.391]

    Промежуточный домен соединяет апикальный с большим экваториальным доменом. Экваториальный домен обладает АТРазной активностью, т.е. способен гидролизовать АТР до ADP и Н3РО4. Гидролиз АТР необходим для высвобождения белка из шаперонинового комплекса. [c.23]

    Вероятно, наиболее подробно изучен так называемые миозин II — основной сократительный белок поперечнополосатых, сердечных и гладких мышц. Миозин II (в дальнейшем для простоты — миозин) представляет собой гетерогексамер и состоит из двух тяжелых цепей (мол. масса 200 000—220 ООО), двух регуляторных легких (мол. масса 17 000—21 ООО) и двух так называемых щелочных (или существенных) легких (мол. масса 16 000—22 ООО) цепей. Эти шесть полипептвдных цепей удерживаются между собой за счет нековалентных взаимодействий и образуют прочный комплекс, который называется мономерным миозином. Тяжелые цепи миозина имеют асимметричную форму, при этом К-концевая часть формирует глобулярную головку, в которой располагаются АТРазный и актинсвязываю-щий центры, а С-концевая часть сворачивается в длинную асимметричную а-спираль. Легкие цепи миозина располагаются в области шейки , т.е. на переходе от головки к стержневому хвосту, и играют в основном регулято шую и структурную роль, стабилизируя правильную упаковку определенных частей молекулы миозина (рис. 94). [c.178]


Смотреть страницы где упоминается термин АТРазный комплекс: [c.218]    [c.224]    [c.79]    [c.403]    [c.416]    [c.423]    [c.424]    [c.427]    [c.430]   
Биохимия Том 3 (1980) -- [ c.270 ]




ПОИСК







© 2024 chem21.info Реклама на сайте