Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки в органеллах

    Рибосомы хлоропластов очень сходны с бактериальными рибосомами, тогда как рибосомы митохондрий несколько больше отличаются от последних поэтому проследить происхождение митохондрий сложнее. Однако сходство между белками дает основание предполагать, что те. и другие органеллы произошли от бактерий, вступивших в устойчивый симбиоз (в качестве эндосимбионтов) с какими-то примитивными эукариотическими клетками как полагают, митохондриям дали начало пурпурные бактерии, а хлоропластам (позднее) - цианобактерии или близкие к ним организмы. Хотя многие гены этих древних бактерий все еще используются для синтеза белков органеллы, большая их часть по неясным причинам включилась в ядерный геном, где они кодируют ферменты, которые сходны с бактериальными и синтезируются на рибосомах в цитозоле, а затем переходят в органеллу. [c.502]


Рис. 9-71. Белки, синтезируемые в цитозоле и переносимые затем в митохондрию, не только составляют основную часть всех белков органеллы, но и играют важную роль в функционировании митохондриальной генетической системы. Рис. 9-71. Белки, синтезируемые в цитозоле и переносимые затем в митохондрию, не только <a href="/info/1462466">составляют основную</a> часть всех белков органеллы, но и играют <a href="/info/1600003">важную роль</a> в функционировании <a href="/info/166734">митохондриальной генетической</a> системы.
    Л. Неправильно. Информация, необходимая для создания ограниченных мембранами органелл, например ЭР или аппарата Гольджи, содержится не только в ДНК. В последней закодированы белки органелл. Для сборки необходима также эпигенетическая информация в форме хотя бы одного специфического белка. Эпигенетическая информация передается от родительской клетки клет-ке-потомку в виде самой органеллы. [c.362]

    Как видно, система (будь она закрытой или открытой), где отсутствует механизм преобразования энергии, никоим образом не является подтверждением теории эволюции. И никто не утверждает, что в условиях первичной атмосферы присутствовали настолько комплексные и разумные механизмы. По сути, основная тупиковая проблема для эволюционистов заключается в том, как возник подобный комплексный механизм превращения солнечной энергии, к примеру, фотосинтез растений, повторить который не смогла даже современная технология. Именно поэтому солнечная энергия, поступавшая в первичную атмосферу, никоим образом не могла способствовать появлению систематичности и упорядоченности. Как бы ни повышалась температура, аминокислоты будут продолжать противодействовать образованию последовательных соединений. Для получения более сложных, чем аминокислоты, молекул белков и более комплексных, чем белки, органелл клеток, опять-таки недостаточно одной лишь энергии. Основополагающий фактор в возникновении живой клетки - сознательный проект, или же другими словами, творение. [c.130]

    Вещества клеток и органелл. Белки,углеводы, нуклеиновые кислоты [c.8]

    Митохондрии — сферические или удлиненные внутриклеточные органеллы, богатые различными ферментами. Они выполняют различные функции осуществляют окислительные реакции, являющиеся источником энергии переносят электроны по цепи компонентов, синтезирующих АТФ катализируют синтетические реакции, идущие за счет АТФ производят синтез митохондриальных белков. [c.250]

    В основе явления наследственности лежит образование двумя молекулами ДНК комплекса (двойной спирали), если имеется определенное соответствие между порядком расположения мономерных звеньев в обеих полимерных молекулах. Синтез белков происходит на специальных органеллах — рибосомах, в которых в единый комплекс объединено несколько молекул РНК и много разных молекул белков (например, у бактерий 3 молекулы РНК и 53 молекулы белка). [c.54]


    Изучение большого числа протекающих в митохондриях процессов может быть успешно проведено как с изолированными органеллами в качестве источника фермента, так и с высокоочищенными препаратами соответствующих митохондриальных ферментов. Однако второй подход практически неприемлем для изучения реакций, непосредственно сопряженных с функционированием системы трансформации энергии в митохондриях. В первую очередь это относится к процессу окислительного фосфорилирования, который с высокой эффективностью протекает и может быть изучен либо в изолированных (интактных) митохондриях, либо в специальным образом полученных препаратах субмитохондриальных частиц. В этом случае также важно убедиться в том, что скорость изучаемой реакции линейно зависит от концентрации катализатора (от концентрации общего белка митохондрий или субмитохондриальных частиц). Измерение скорости окислительного фосфорилирования и термодинамической эффективности (отношение АДФ/О) традиционно проводится и предшествует изучению любых митохондриальных функций. [c.465]

    Первые электронные микроскопы появились в продаже в 1939 г. и с тех пор стали одним из важнейших приборов, применяющихся при изучении биологии клетки. Обладая разрешением 0,4 нм, электронный микроскоп позволяет увидеть молекулы белков и нуклеиновых кислот, а также детали строения клеточных органелл. Еще более широко электронный микроскоп стал использоваться с 1950 г., когда были сконструированы микротомы и ножи, позволяющие делать ультратонкие (20—200 нм) срезы тканей, предварительно залитых в пластмассу. [c.19]

    Взяв за основу происхождение организма, различают растительные, животные, вирусные и бактериальные белки, в то же время учитывая органы и клеточные органеллы — белки плазмы, мышечные белки, белки молока, яиц, рибосомные белки, белки клеточного ядра, микросом и мембран. [c.344]

    Наоборот, в клетках некоторых органов белки могут скапливаться, образуя оформившиеся элементы. Так, в ходе дифференциации ситовидных трубок флоэмы можно наблюдать особые фибриллярные белки, протеины Р, приуроченные к порам сит. Как показали многочисленные работы, белки могут аккумулироваться локально и чаще всего временно в растительных клетках многих типов эти белки, организованные в кристаллические или пара-кристаллические структуры, локализованы в зависимости от конкретных обстоятельств в гиалоплазме, в эндоплазматическом ретикулуме, в ядре, реже в пластидах или митохондриях. Иногда в каком-либо растительном органе некоторые органеллы, такие. [c.125]

    Растворимая фаза хлоропластов, или строма, представляет собой белковый гель, в котором концентрация белка может достигать 300 мг/мл [26], где присутствуют также нуклеиновые кислоты, рибосомы и ряд ферментов, катализирующих реакции метаболизма этих органелл (более детальные сведения см. в [17]). [c.242]

    В зеленом клеточном соке одновременно присутствуют растворимые белки из всех компартментов клеток (ядер, хлоропластов, митохондрий, цитоплазмы, вакуоли и др.), а также органеллы и их фрагменты, в значительной мере состоящие из липопротеиновых мембран. [c.246]

    Полярные липиды, такие, как фосфолипиды и галактолипиды, как правило, образуют совместно с соединенными с ними белками липопротеиновые мембраны, которые окружают клетки или разграничивают внутриклеточные органеллы (рис. 7.1). [c.287]

    В принципе та же ситуация в живой природе. Все биосистемы имеют клеточную организацию с однотипным строением клеток, органелл, генетического аппарата и т.д. У всех видов животных и растений гены построены из одних и тех же четырех нуклеотидов, а белки - из одних и тех же двадцати аминокислот. В процессе дивергентного эволюционного развития совершенствование и усложнение биосистем происходит путем дифференциации и объединения уже существовавших структур с образованием новых связей, т.е. путем добавления и комбинирования, а не кардинальной переделки прежней структурной организации. Таким образом, наличие у природы структурной организации сделало возможным появление научного мышления. "Представим себе, - писал К.А. Тимирязев в 1920 г., - что бы было, если бы вместо наших 60 элементов, их существовало бы 60 млрд. Каждый камень представлялся бы нам чем-то совершенно новым, все известное нам об остальном было бы нам не в прок... А каково было бы положение биологии, если бы существовали бы только неделимые особи, не было бы видов, дети не походили бы на родителей" [10. С. 11]. [c.20]

    Сопоставление свойств соединений органического и неорганического мира позволяет, как мне кажется, сделать вывод, что особое качество живой материи прежде всего обусловлено белками Они в той же мере являются носителями активного начала всего живого, в какой ДНК -носителями потенциального начала Исключительная роль природных аминокислотных последовательностей в процессах жизнедеятельности и структурировании макромолекулярных комплексов, органелл, клеток, тканей, органов и целых организмов заключается в присущей только им способности к структурной самоорганизации собственных молекул В зависимости от внешнего окружения белковые цепи могут находиться в двух равновесных состояниях в виде флуктуирующего статистического клубка и в форме компактной трехмерной структуры Первое состояние лишено специфических черт живого и своим поведением мало отличается от синтетических полимеров в растворе Аминокислотные последовательности обретают свои исключительные свойства - становятся белками - лишь во втором равновесном состоянии, когда цепи свертываются и принимают фиксированные формы, обладающие биологической активностью [c.56]


    Способность образовывать огромные площади внутри клетки например, в печени на 1 мг белка приходится 0,5 м2 мембран. Природа создала клетки и субклеточные органеллы такими маленькими, чтобы нормальная жизнедеятельность протекала на больших площадях мембран. Интенсивность процессов жизнедеятельности тем выше, чем больше соотношение поверхность/объем. Примером тому может служить деление бактерий в течение 15-30 мин, а вот амеба делится в течение дня. [c.108]

    Пристальное внимание исследователей привлечено к структуре и функции макромолекул, включающих комплексы белков и нуклеиновых кислот. Этот особый интерес вызван тем, что многообразие проявлений жизни непосредственно связано с этими полимерными молекулами. Биохимики имеют достаточно оснований для утверждения, что природа синтезированных в клетках белков зависит в первую очередь от природы ДНП, точнее ДНК, а свойства живых организмов, как и структурная организация субклеточных органелл, клеток и целостного организма, определяются свойствами синтезированных белков. [c.86]

    Наружные мембраны клеток отличаются от внутренних по липидному составу (последние почти не содержат стеринов, имеют соотношение ФХ/ФЭ > 1) и обладают специфическим набором ферментов и рецепторов. Как правило, белки плазматических мембран со стороны внеклеточной среды обильно гликозилированы. Внутриклеточные мембраны содержат мало гликопротеинов и гликолипидов и характеризуются меньшей микровязкостью. Благодаря этому они могут образовывать органеллы малого размера. Мембранные белки выполняют различные специфические функции рецепторные, транспортные, ферментативные, энергопреобразующие и т.д. (см. далее). [c.303]

    Место синтеза белка можно установить in vivo по его чувствительности к воздействию веществ, преимущественно ингибирующих синтез белка в цитоплазме или органелле. Обычно синтез белка в митохондриях и хлоропластах чувствителен к антибиотикам, ингибирующим синтез белка в бактериях, например к эритромицину и хлорамфениколу. Эти антибиотики не влияют на синтез белка в цитоплазме, который, однако, обладает чувствительностью к циклогексимиду на синтез белка в органелле циклогексимид не влияет. Происхождение белков органелл может быть установлено in vitro при исследовании продуктов, синтезируемых в препаратах изолированных органелл. [c.284]

Рис. 7-75. Белки, синтезируемые в цитозоле и переносимые затем в митохондрию, не только составляют основную часть всех белков органеллы, но и играют важную роль в митохондриальной системе белкового синтеза. Из компонентов этой системы сама митохондрия синтезирует только мРНК, Рис. 7-75. Белки, синтезируемые в цитозоле и переносимые затем в митохондрию, не только <a href="/info/1462466">составляют основную</a> часть всех белков органеллы, но и играют <a href="/info/1600003">важную роль</a> в <a href="/info/1350647">митохондриальной системе</a> <a href="/info/91070">белкового синтеза</a>. Из компонентов <a href="/info/970271">этой системы</a> сама митохондрия синтезирует только мРНК,
    Техника микроинъекций, первоначально разработанная 1970 г. для клеток животных независимо А. Грасс.манном и> Е. Г. Дьякумакосом, в настоящее время стала рутинным методом для введения небольших молекул, макромолекул (ДНК,. РНК, белков), органелл и вирусных частиц в самые различные животные клетки [4]. Методика основана на использовании стеклянных микропипеток с диаметром кончика 0,5—10 мкм,. с помощью которых осуществляют прямой перенос макромолекул в цитоплазму или в ядро реципиентной клетки или органа. Последние иммобилизуют на твердой подложке, искусственно связывают с субстратом или закрепляют посредством пипетки с присоской [1, 17, 39]. [c.221]

    Следовательно, для формирования мембранных органелл недостаточно только информации ДНК, определяющей белки органелл. Необходима также <опигенетическая информация в виде хотя бы одного характерного белка в мембране органеллы. Эта информация пфедается от родительской клетки потомству с самой органеллой. Вероятно, такая информация необходима для поддержания компартментации клетки, тогда как информация, содфжащаяся в ДНК, необходима для размножения нуклеотидных и аминокислотных последовательностей. [c.17]

    Всякому структурному исследованию ДНК или РНК предшествуют выделение их из клеток, очистка и фракционирование. Поскольку в клетке нуклеиновые кислоты практически всегда находятся в комплексес белками (т. е. в вил, нуклеопротеидов), их выделение сводится в основном к очистке от белков (депротеинизации). Чаще всего нуклеиновые кислоты экстрагируют из гомогенатов клеток или очищенных клеточных органелл смесью фенол — вода В присутствии ионных детергентов (например, додецилсульфата натрия). При этом белки (и ряд других клеточных компонентов) переходят в органическую фазу, а нуклеиновая кислота остается в водной фазе. Из водного раствора ДНК или РНК осаждают спиртом. [c.10]

    Для жизненной функции клеток решающее значение имеют белки и нуклеиновые кислоты. Белки — главный органический компонент цитоплазмы. Некоторые белки относятся к структурным элементам клетки, другие — к имеющим важное значение ферментам. Радиационное повреждение белков состоит в уменьшении их молекулярной массы в результате фрагментации полипептидных цепочек, в изменении растворимости, нарушении вторичной и третичной структуры, агрегировании и т. п. Биохимическим критерием радиационного повреждения ферментов является утрата ими способности осуществлять специфические реакции. При интерпретации пострадиационных изменений ферментативной активности in vitro наряду с радиационными нарушениями самого фермента следует учитывать и другие повреждения клетки, прежде всего мембран и органелл. Чтобы вызвать явные изменения ферментативной активности в условиях in vitro, требуются значительно большие дозы, чем in vivo. [c.16]

    Во время процесса дедифференциации, который у всех клеток сходен, клетки должны утратить характерные черты исходной ткани. В первую очередь они теряют запасные вещества — крахмал, белки, липиды. В них разрушаются специализированные клеточные органеллы, в частности хлоропласты, но возрастает число ами-лопластов. Кроме того, разрушается аппарат Гольджи, перестраиваются эндоплазматический ретикулюм и элементы цитоскелета. [c.165]

    Мембраны выполняют в клетке большое число функций. Наиболее очевидной из них является разделение внутриклеточного пространства на компартменты. Плазматические мембраны, например, ограничивают содержимое клетки, а митохондриальные — отделяют митохондриальные ферменты и метаболиты от цитоплазматических. Полупроницае-мость мембран и позволяет им регулировать проникновение внутрь клеток и клеточных органелл как ионов, так и незаряженных соединений. Проникновение многих из них внутрь клетки осуществляется против градиента концентрации. Таким образом, в процессе, известном под названием активный транспорт, совершается осмотическая работа. Протекающий в мембранных структурах бактерий и митохондрий процесс окислительного фосфорилирования служит источником энергии для организма. В хлоропластах зеленых листьев имеются мембраны с очень большим числом складок, которые содержат хлорофилл, обладающий способностью поглощать солнечную энергию. Тонкие мембраны клеток глаза содержат фоторецепторные белки, воспринимающие световые сигналы, а мембраны нервных клеток осуществляют передачу электрических импульсов. [c.337]

    Изучение фотографических изображений клетки, полученных прн помощи микроскопа в разные моменты времени, позволили увидеть, что плазматическая мембрана, так же как и митохондрии и другие органеллы, постоянно находится в движении. Митохондрии скручиваются и поворачиваются, а поверхность мембраны постоянно совершает волнообразные движения. Пузырьки освобождают свое содержимое в окружающую среду, выводя его из клеток, а перенос веществ внутрь клетки осуществляется за счет процесса эндоцитоза (гл. 1, разд. Б.4). При помощи химических методов было показано также, что составляющие мембраны вещества транспортируются из эндоплаз1матического ретикулума в пузырьки аппарата Гольджи, в экскреторные гранулы и в плазматическую мембрану. Важным этапом биосинтетических процессов, протекающих в клетке, является присоединение углеводных (гликозильных) остатков к молекулам белка с образованием гликопротеидов и гликолипидов. Ферменты, катализирующие эти реакции, — гликозилтрансферазы (гл. 12)-—обнаружены в эндоплазматическом ретикулуме и в пузырьках а1ппарата Гольджи. Эти ферменты катализируют присоединение углеводных единиц (по одной в каждом акте реакции) к определенным местам молекул белков, липидов и других соединений, экскретируемых из клеток. Другие ферменты катализируют присоединение сульфатных и ацетильных групп к углеводным фрагментам молекул глико Протеидов. [c.356]

    Пря улыпрацентрифугировании для разделения используется седиментация, зависящая от размера, плотности и формы молекулы белка. Центрифугирование в градиенте плотности (зональное центрифугирование) часто применяется для разделения белков, а также для разделения органелл и вирусов. Одной из характеристик белка служат данные седиментационного анализа в ультрацентрифуге (разд. 3.5.4). Положение возникающих белковых зон можно наблюдать с помощью оптических методов. [c.349]

    Белковые тельца представляют собой цитоплазматические органеллы, обычно сферические, диаметр которых может варьировать в зависимости от характера растительной ткани и ботанического вида в пределах от 0,2 до 20 мкм (рис. 5.1, 5.2, 5.3). У большинства бобовых и в крахмалоносном эндосперме зерновых культур белковые тельца имеют относительно простую структуру (см. рис. 5.1 и 5.4/1) они состоят из матрицы, плотной для электронов, однородны по внешнему виду, иногда зернистые или имеют вид хлопьев, окружены единой оболочкой. Типичные белковые тельца, выделенные из семян Vi ia faba Вебером с соавторами [118], состоят из билипидного слоя толщиной 100 А, с которым связано около трех десятков различных белков. [c.129]

    Биосинтез белков в клетках листьев зависит от экспрессии генетической информации трех различных геномов ядра, хлоропластов и митохондрий. Эта генетическая информация проявляется через три генетические системы, включающие ДНК, ДНК-полимеразу, РНК-полимеразу и аппарат белкового синтеза (рибосомы, транспортные РНК, ферментный набор...). Ядерные гены подчиняются закону двуродительского наследования, тогда как гены органелл имеют исключительно материнское наследование. Именно эти носители генетической информации с их собственными законами передачи определяют структуру и свойства белков листьев, а также содержание в них белков, липидов, волокон и т. п. Более подробные сведения о передаче и проявлении генетической информации в хлоропластах можно получить из литературных источников [25, 27, 1П , как и по тем же вопросам применительно к митохондриям [67]. [c.237]

    Особую группу ферментов составляют надмолекулярные (или мультимолекулярные) ферментные комплексы, в состав которых входят не субъединицы (в каталитическом отношении однотипные протомеры), а разные ферменты, катализирующие последовательные ступени превращения какого-либо субстрата. Отличительными особенностями подобных муль-тиферментных комплексов являются прочность ассоциации ферментов и определенная последовательность прохождения промежуточных стадий во времени, обусловленная порядком расположения каталитически активных (различных) белков в пространстве ( путь превращения в пространстве и времени). Типичными примерами подобных мультиферментных комплексов являются пируватдегидрогеназа и а-кетоглутаратдегидрогеназа, катализирующие соответственно окислительное декарбоксилирование пировиноградной и а-кетоглутаровой кислот в животных тканях (см. главу 10), и синтетаза высших жирных кислот (см. главу 11). Молекулярные массы этих комплексов в зависимости от источника их происхождения варьируют от 2,3 10 до 10 10 Ассоциация отдельных ферментов в единый недиссоциирующий комплекс имеет определенный биологический смысл и ряд преимуществ. В частности, при этом резко сокращаются расстояния, на которые молекулы промежуточных продуктов должны перемещаться при действии изолированных ферментов. Ряд таких мультиферментных комплексов, иногда называемых ферментными ансамблями, структурно связан с какой-либо органеллой (рибосомы, митохондрии) или с биомембраной и составляет высокоорганизованные надмолекулярные системы, обеспечивающие жизненно важные функции, например тканевое дыхание (перенос электронов от субстратов к кислороду через систему дыхательных ферментов). [c.129]

    Внутриклеточная локализация. В наружных покровах тела меланины обычно присутствуют в специфических клетках, известных как меланоциты или меланофоры. Внутри этих клеток меланины могут быть локализованы в специфических органеллах меланосомах и в ассоциации с белком в виде гранул, обычно около 1 мкм длиной, которые имеют различную форму у [c.267]

    Подавляющее большинство генов растений локализованы в ядерной ДНК, однако хлоро-пласты и митохондрии тоже содержат гены, кодирующие ряд важных и уникальных функций. При этом не все белки, присутствующие в этих органеллах, закодированы в их ДНК. Некоторые из них кодируются ядерной ДНК, синтезируются в цитоплазме, а затем с помошью специального механизма импортируются в соответствующую органеллу. Есть два способа введения специфического чужеродного белка в митохондрии или хлоропласты. Один способ — это слияние гена, кодирующего чужеродный белок, и последовательности сигнального пептида, направляющего белки в органеллы. Такая конструкция может быть [c.383]

    Рибосома (Ribosome) Клеточная органелла, рибонук-леопротеидная частица, при участии которой осуществляется синтез белка (трансляция). Состоит из двух субчастиц, больщой и малой. [c.559]

    Колбочки, являющиеся рецепторами цветового зрения, устроены значительно сложнее, чем палочки, но механизм их действия в принципе такой же. Мы уже упоминали, что колбочки и палочки содержат одинаковый хромофор. Различия в спектрах поглощения (рис. 1.3) обусловлены строением опсинов, с которыми связан ретиналь. О структуре этих белков в колбочках известно еще меньше, чем об опсине палочек. Предполагается, что они закодированы в различных генах и могут, следовательно, иметь различные аминокислотные последовательности. Это подтверждается тем фактом, что цветовая слепота (дальтонизм) имеет рецессивный наследственный характер и связана с полом. Около 1% мужчин не различают красный цвет и 2% —зеленый, тогда как у женщин дальтонизм встречается значительно реже. Все три типа колбочек имеют и морфологические отличия от палочек. Помимо того что колбочки конические по форме, они отличаются от палочек и по структуре своих дисковых мембран, которые у них представляют собой не отдельные органеллы, а просто впячивания плазматической мембраны, т. е. плазматические и дисковые мембраны образуют континуум. Эти отличия колбочек учтены в модели фоторецепции Хагинса (рис. 1.7а, справа) связь между поглощением света и закрыванием натриевых каналов здесь опять-таки осуществляет кальций, который [c.19]


Смотреть страницы где упоминается термин Белки в органеллах: [c.392]    [c.58]    [c.250]    [c.346]    [c.247]    [c.104]    [c.46]    [c.20]    [c.531]    [c.44]    [c.414]   
Ферменты Т.3 (1982) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Органеллы



© 2024 chem21.info Реклама на сайте