Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Актин немышечный

Таблица 10-5. Основные типы актин-связывающих белков немышечных клеток Таблица 10-5. <a href="/info/3714">Основные типы</a> <a href="/info/1416121">актин-связывающих белков</a> немышечных клеток

    Некоторые белки наделяют клетку или организм способностью сокращаться, изменять форму или передвигаться. Актин и миозин представляют собой нитевидные белки, функционирующие в сократительной системе скелетной мышцы, а также во многих немышечных клетках (разд. 2.13). Другим примером таких белков служит тубулин-белок, из которого построены микротрубочки. Они являются важными элементами ресничек и жгутиков (разд. 2.14), при помощи которых клетки передвигаются. [c.139]

    Способность к движению — одно из характерных свойств всех живых организмов, начиная от простейших и кончая самыми сложными. Сокраш ение разных мышц и движение листьев растений, биение ресничек и движение жгутиков, деление клеток и движение протоплазмы — все эти разнообразные формы проявления двигательной активности имеют обш ую черту — превраш ение химической энергии, освобо-ждаюш ейся при гидролизе АТФ, в механическую. Белковые структуры, участвую-ш ие в гидролизе АТФ и генерации силы, — это либо миозин и актин, либо кинезин (или динеин) и тубулин. При мышечном сокраш ении механическая работа осуш е-ствляется организованными в надмолекулярные структуры ферментом — АТФазой миозина — и актином. Регулятором двигательной активности в мышцах является кальций. В немышечных клетках, наряду с кальциевой, по-видимому, суш ествуют и другие способы регуляции. Выяснение молекулярных механизмов генерации силы, трансформации химической энергии гидролиза АТФ в механическую работу, а также механизмов регуляции этих процессов является основной задачей биофизики биологической подвижности. Наибольшие успехи в этом направлении достигнуты при исследовании наиболее организованных поперечно-полосатых мышц позвоноч- [c.225]

    РИС 4-25. А. Схематическое изображение саркомера поперечнополосатой мышцы Б Схема взаимодействия между миозином и связанным с мембраной актином, приводящего к направленному движению в немышечных клетках На схеме показано, как связанный с мембраной пузырек перетягивается в направлении другой мембраны, например плазматической. Существенной особенностью этой модели является биполярная природа миозиновых агрегатов [98] [c.326]

Рис. 11-25. Сборка филаментов немышечного миозина контролируется фосфорилированием его легких цепей Фосфорилирование вызывает два эффекта оно изменяет конформацию миозиновой головки таким образом, что на ней обнажается актин-связывающий участок, и высвобождает миозиновый хвост из липкого кармана на миозиновой головке, тем самым позволяя молекулам миозина объединяться в короткие биполярные филаменты Точно так же ведет себя гладкомышечный миозин Рис. 11-25. <a href="/info/1413258">Сборка филаментов</a> <a href="/info/510021">немышечного миозина</a> контролируется фосфорилированием его <a href="/info/1413846">легких цепей Фосфорилирование</a> вызывает два эффекта оно изменяет конформацию <a href="/info/510026">миозиновой головки</a> <a href="/info/461013">таким образом</a>, что на ней обнажается <a href="/info/1416121">актин-связывающий</a> участок, и высвобождает <a href="/info/1279528">миозиновый хвост</a> из липкого кармана на <a href="/info/510026">миозиновой головке</a>, тем самым позволяя <a href="/info/1435305">молекулам миозина</a> объединяться в короткие <a href="/info/1413532">биполярные филаменты</a> Точно так же ведет себя гладкомышечный миозин

    Актин и миозин присутствуют также и в гладких мышцах, и в большинстве немышечных клеток. Сокращение в них осуществляется по тому же принципу, что и в сердечной и скелетных мышцах, но элементарные сократимые блоки здесь мельче и не обладают столь высокой степенью упорядоченности кроме того, их активность и степень ассоциации находятся под контролем Са -зависимого фосфорилирования одной из легких цепей миозина. [c.273]

    Актин составляет значительную долю белка всех эукариотических клеток например, в фибробластах эта доля достигает почти 10%, причем около половины входит в состав филаментов. В немышечных клетках актиновые филаменты выполняют по меньшей мере две функции. Во-первых, они образуют пучки с поперечными сшивками, служащие опорой для различных внутриклеточных структур и наружных отростков. Во-вторых, совместно с миозином они формируют различные сократительные системы, которые, по-видимому, ответственны за многие проявления клеточной подвижности. [c.110]

    Свойства некоторых актин-связывающих белков, характерных для немышечных клеток позвоночных, представлены на рис. 10-72 и в табл. 10-5. [c.120]

    В цитоплазме растительных клеток обнаружены также филаментные структуры, состоящие из немышечного актина. Это сократительный белок, сходный по молекулярной массе с актином мышц и близкий ему по аминокислотному составу. Он может находиться в мономерной (глобулярный, Г-актин) или в полимерной форме двойной спирали (фибриллярный, Ф-актин). Микрофиламенты актина взаимодействуют с микротрубочками кортикального слоя и плазмалеммой. Они участвуют в пространственной организации метаболических [c.24]

    К этому классу относятся также ните-вцдные белки, присутствующие в сократительных системах мьш1ечных и немышечных клеток, например актин и миозин, а также протофиламенты, из которых построены микротрубочки. [c.140]

    Миозин есть почти во всех клетках позвоночных и всегда находится в сократительных пучках, образуемых в цитоплазме актиновыми филаментами. Миозин - эволюционно гораздо менее консервативный белок, чем актин, и известно несколько его форм. При полимеризации in vitro миозин скелетных мышц, например, образует значительно более крупные филаменты. чем миозины немышечных клеток. [c.259]

    Высокоспециализированные сократительные механизмы мышечных клеток, которые мы здесь рассмотрели, произошли от более простых силовых механизмов, имеющихся во всех эукариотических клетках. В связи с этим неудивительно то, что миозин немышечных клеток наиболее сходен с миозином гладких мышц - наименее специализированного типа мускулатуры. В клетках этого типа сокращение запускается повышением концентрации Са в цитозоле (так же как и в клетках сердечной и скелетных мышц), однако ионы Са действуют тут не через тропонин-тропомиозиновый комплекс. Инициация сокращения происходит главным образом за счет фосфорилирования одной из двух цепей молекулы миозина, что контролирует взаимодействие миозина с актином. [c.269]

    Две легкие цепи миозина, входящие в состав каждой миозиновой головки (см. рис. 11-9), неодинаковы, и при сокращении гладкомышечных и немышечных клеток фосфорилируется лишь одна из них. Когда она фосфорилирована, головка миозина может взаимодействовать с актиновым филаментом, что приводит к сокращению при дефосфорилировании этой легкой цепи миозиновая головка стремится отделиться от актина, становясь тем самым неактивной. Это фосфорилирование катализируется специальным ферментом - киназоп легких цепей миозина, которая становится активной, лишь связываясь с комплексом Са -кальмодулин (разд. 12.4.3). Таким образом, сокращение [c.269]

    Как мы видели, в мышечных клетках всех трех типов, а также в немышечных клетках сократительный аппарат имеет много общих черт. Различные типы сокращения, свойственные разным клеткам, отчасти определяются тканеспецифичностью экспрессии генов, кодирующих белки этого аппарата. У млекопрггающих, нанример, имеются по меньшей мере шесть генов актина, шесть генов тяжелой цепи миозина, три трономиозиновых гена и три гена гропонина Т. В некоторых случаях кодируемые разными генами белки несколько различаются по функции в других же случаях функциональных различий пока не обнаружено. [c.272]

    Из шести вариантов актина, экспрессируемых у млекогаггающих один содержрггся только в скелетных мышцах, другой - в сердечной мышце, а еще два - только в гладкомышечных клетках (первый из них - в гладкой мускулатуре сосудов, а второй в мускулатуре других органов) и наконец, два последних варианта, известные как немышечные, или цитоплазматические, актины, являются, но-видимому, универсальными компонентами цитоскелета и в значительных количествах присутствуют в большинстве немышечных клеток. Все эти виды, или изоформы, актина очень сходны по аминокислотным последовательностям например, мышечные актины отличаются от цитоплазматических менее чем по 7% аминокислот. Если не считать некоторых различий в N-концевой части молекулы, возможно, влияющих на процесс полимеризации актина, не ясно, имеют ли такие различия какое-либо функциональное значение. Экспрессия гена сердечного актина в культивируемых фибробластах не изменяет ни форму, ни поведение клеток, и синтезируемый белок легко включается в их нормальные актиновые структуры. Напротив, различия между миозинами влияют и на скорость сокращения, и на его регуляцию, а также на стенень ассоциации молекул миозина в клетке. [c.272]


    Белок С-актин, выделенный из немышечных клеток, имеет мол. массу около 43 ООО и, подобно мышечному актину (а-актину), содержит N-метилгистидиловые остатки. В присутствии магния [c.342]

    Актиновые микрофиламенты в немышечных клетках связаны с другими белками, подобными мышечным. На плазматических мембранах в местах прикрепления микрофиламентов и на кончиках микроворсинок присутствует а-актинин. Геодезические купола— леса цитоскелета, окружающие ядра эукариотических клеток, состоят из актина, а-актинина и тропомиозина. а-Актинин обнаруживается и в самих актиновых микрофиламентах. [c.344]

    Функция немышечного актина регулируется, по-видимому, несколькими специализированными белками. Профнлин предотвращает полимеризацию С-актина даже в присутствии достаточных концентраций магния и хлористого калия. Филамин способствует образованию сети актиновых микрофиламентов. Тропомиозин усиливает формирование пучков стрессовых фибрилл актина. а-Актинин способствует прикреплению актиновых микрофиламентов к мембранам, субстрату и другим клеточным органеллам. [c.344]

    Структура миозиновых нитей. Содержание миозина, актина, тропомиозина и тропонина в миофибриллах составляет примерно 55, 25, 15 и 5% соответственно. Отличительная черта миозина скелетных мышц заключается в его способности спонтанно образовывать в условиях in vitro гигантские полимерные комплексы, намного превосходящие агрегаты миозина немышечных тканей. Из скелетных мышц миозин извлекается концентрированными солевыми растворами, в которых он хорошо растворим. Обработанная таким образом мышца теряет только толстые филаменты, которые распадаются на составляющие их молекулы миозина, имеющего молек. массу 520 кДа. При обработке концентрированным раствором мочевины или другим детергентом молекула миозина распадается на шесть полипептидных цепей две идентичные тяжелые цепи с молекулярной массой 220 и две пары легких цепей с молекулярной массой 22 и 15 кДа [459 61]. Как впервые с помощью электронной микроскопии установил в 1963 г, X. Хаксли, миозин состоит из двух глобулярных "головок", каждая из которых прикреплена к тяжелой цепи, содержащей длинный участок а-спирали [462]. В нативной молекуле миозина а-спирали двух тяжелых цепей закручены одна вокруг другой в суперспираль, образующую палочковидный хвост, из которого выступают две головки. Каждая головка образована глобулярной частью тяжелой цепи ( 95 кДа) и включает по одной молекуле легкой цепи двух видов (рис. 1.33). [c.124]

    В этом разделе мы сначала познакомимся с опорными структурами, состоящими из актиновых филаментов, затем рассмотрим некоторые актомио-зиновые сократительные системы немышечных клеток и, наконец, расскажем о ряде белков, связывающихся с актином, при участии которых актиновые филаменты в клетке организуются в трехмерную сеть. [c.110]

    В то время как функции сократимого кольца и опоясывающих десмосом достаточно ясны, роль других систем актиновых филаментов не столь очевидна. Хорошим примером могут служить организованные пучки таких филаментов, называемые напряженными нитями,-характерные компоненты цитоскелета культивируемых клеток (рис. 10-60). Они имеют толщину 0,5 мкм и длину около 5 мкм, содержат наряду с актином некоторые другие белки и располагаются в цитоплазме у нижней (прикрепленной к подложке) поверхности клетки. Эти волокна можно отделить от других клеточных компонентов, и в изолированном виде они способны сокращаться в присутствии АТР. Особенно четко напряженные нити выявляются при иммунофлуоресцентном окрашивании (рис. 10-61), и с помощью этого метода было показано, что они содержат актин, миозин, а-актинин и тропомиозин. Некоторые из этих белков, включая миозин, располагаются вдоль волокна с определенной периодичностью, однако детали строения всего этого комплекса (как, впрочем, и других сократительных систем немышечных клеток) остаются неясными. Тем не менее нам все же кое-что известно о свойствах немышечного миозина. [c.115]

    Актин входит в состав многих клеточных структур и может связываться с целым рядом специфических белков. Жесткие пучки параллельно расположенных актиновых филаментов, скрепленных белковыми сшивками (например, фимбриновыми), имеются в микроворсинках и стереоцилиях, где они выполняют главным образом структурную роль. Пучки актиновых нитей, связанные с короткими биполярными агрегатами молекул немышечного. миозина, встречаются в определенных участках клетки, где нужна сократительная активность, например в сократимом кольце делящейся клетки, в опоясывающих десмосомах у апикальной поверхности эпителиальных клеток, а также в напряженных нитях, характерных для клеток, растущих в монослойной культуре. Менее упорядоченные системы актиновых филаментов содержатся во всей цитоплазме и могут придавать ей свойства геля. Густая сеть таких филаментов образует непосредственно под плазматической мембраной так называемый кортикальный слой. Эта сеть формируется с помощью гибких сшивающих белков, таких как филамин она способна обратимо изменять свои механические свойства в зависи.ности от концентрации ионов Са , что сопровождается повышением или понижение.ы вязкости цитоплазмы эти изменения происходят при участии актин-фрагментирующих белков, таких как гельзолин. Предполагается, что актиновые сети, прикрепленные с помощью специальных белков к плазматической мембране, взаимодействуют с немышечным миозином, обеспечивая подвижность клеточной поверхности, и играют ключевую роль в сложном процессе передвижения всей клетки. [c.120]

    В цитоплазме растительных клеток обнаружен немышечный актин. Сборка глобулярных мономеров Г-актина в двойную спираль фибриллярного Ф-актина происходит с затратой энергии АТР в присутствии Mg +. Фибриллярный актин образует пучки микрофиламентов, принимающие участие в движении цитоплазмы. Помимо микрофиламентов, актин может формировать тонкие фибриллы, способные замыкаться, создавая сетеподобную структуру в цитоплазме. Превращение фибрилл актина в замкнутые структуры приводит к местному обратимому желатинированию цитоплазмы, что вызывается локальным увеличением концентрации ионов кальция. Это наблюдается, например, при прохождении потенциала действия по клетке ме-i0 2.7 ждоузлия нителлы. [c.321]

    Веретено включает в себя микротрубочки (МТ) двух типов а) межполгасные, идущие от полюса к полюсу, составляющие 10% от общего числа МТ б) многочисленные хромосомные МТ, направленные от кинетохора к полюсу. МТ состоят из субъединиц тубулина (см. 1.1.2). С ними ассоциированы белки, регулирующие сборку МТ. Из нитей веретена выделен также немышечный актин. В кинетохорах хромосом и у полюсов веретена иммуноцитологическими методами выявлена локализация кальмодулина — белка, связывающего кальций и участвующего в разборке МТ. [c.326]

    В цитоплазме клеток растений обнаружены немышечные актин и миозин (см. 1.1.2). Движущая сила тока цитоплазмы в клетках нителлы возникает на границе раздела фаз между эктоплазмой (где локализованы микротрубочки), находящейся в состоянии геля, и эндоплазмой в состоянии золя. С помощью электронной микроскопии в этой зоне обнаружены субкортикальные фибриллы, направленные в сторону движения цитоплазмы. Каждая фибрилла состоит из 50-100 микрофиламентов диаметром 5 — 6 нм, состоящих из Ф-актина. Нарушение структуры микрофиламентов (обработка клеток цитохалази-ном В) прекращает движение. Актиновые филаменты фукцио-нируют в комплексе с миозином эндоплазмы, который обладает АТРазной активностью. Предполагается, что движущую силу цитоплазмы обусловливают и взаимодействия актиновых [c.391]

    Некоторые из событий, постулируемых рассмотренной схемой, могут, как это уже установлено, иметь место в действительности. Так, наблюдаются приток кальция и изменение pH [54]. Профилин связывается с актином в присутствии кальция более прочно и может полимеризоваться на быстро растущем конце актиновых филаментов [5]. Немышечный тропомиозин связывается с шестью актиновыми мономерами в филаменте, а филамин, по-видимому, не взаимодействует с G-актином. Обнаружено также, что в покоящихся тромбоцитах актин находится в агрегатах диаметром 10—20 и длиной 20— 40 нм — слишком больших для того, чтобы быть комплексами актина с профилином. Под действием кальция из таких агрегатов освобождается а-актинин. [c.40]

    Регуляцию уровня цитоскелетных белков в клетке можно изучать также, прослеживая судьбу этих белков лосле их синтеза. У мышечных клеток скорость кругооборота миофибриллярных белков обратно пропорциональна интенсивности сокращения. Клетки, сокращение которых подавлено, характеризуются более высокой скоростью кругооборота таких белков, как а-актинин, тропонин С, специфическая мышечная форма легкой цепи миозина и а- и -тропомиозин. Отсутствие сократительной активности избирательно влияет на специфические мышечные белкн и не влияет на виментин, десмин и немышечные - и у-актины. Изменение уровня мышечного белка в клетке может достигаться увеличением скорости его деградации без изменения экспрессии генов [193]. Для многих мышечных белков экспрессия изоформ прямо зависит от характера иннервации мышцы. На синтез по крайней мере некоторых белков промежуточных филаментов влияет также пространственная организация клетки. В суспендированных клетках синтез виментина почти полностью [c.101]

    Ориентация тропомиозина внутри канавки актина определяется комплексом регуляторных белков. В поперечнополосатых мышцах этот комплекс представлен тропонином. Тропонин состоит из трех компонентов тропонина С (TN- ), тропонина I (та-1) и тропонина Т (ТМ-Т) (см. рис. 116). Подробно свойства этих белков рассматриваются при описании механизма регуляции сократительной активности поперечнополосатых и сердечных мышц. В гладких мышцах и в некоторых клетках, обладающих немышечной подвижностью, на роль белков-регуляторов, расположенных на тонком филаменте, претендуют кальдесмон и капьпонин. [c.206]


Смотреть страницы где упоминается термин Актин немышечный: [c.4]    [c.326]    [c.268]    [c.276]    [c.291]    [c.292]    [c.342]    [c.102]    [c.110]    [c.116]    [c.120]    [c.342]    [c.102]    [c.109]    [c.112]    [c.195]    [c.197]   
Биохимия человека Т.2 (1993) -- [ c.342 , c.344 ]

Биохимия человека Том 2 (1993) -- [ c.342 , c.344 ]




ПОИСК





Смотрите так же термины и статьи:

Актин

Актин немышечных клеток

Актиний

Актиновые филаменты и белки, связывающиеся с актином, в немышечных клетках



© 2024 chem21.info Реклама на сайте