Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Частицы крекинга

    Анализ полученных данных показывает, что при высокотемпературном режиме крекинга гудрона происходит увеличение Я самых больших частиц крекинг- остатка с увеличением их суммарного содержания на 1,3 %. [c.15]

    Особенно важным является распределение пор частиц крекинг-катализаторов по их размерам, потому что узкие поры ограничивают диффузию и замедляют реакции крекинга и регенерации [32]. Обычно средний диаметр внутренних пор крекинг-ката- [c.18]


    На структуру кипящего слоя сильно влияет гранулометрический состав твердого материала. Материал сравнительно широкого фракционного состава дает более равномерный кипящий слой, чем материал узкого фракционного состава. Для ряда процессов (в частности, для каталитического крекинга) используется материал с частицами основным размером 40—80 мк, содержащий не более 10— [c.74]

Рис. 48. Влияние линейной скорости газа и размера частиц на концентрацию катализатора крекинга. Рис. 48. <a href="/info/813845">Влияние линейной скорости</a> газа и <a href="/info/4442">размера частиц</a> на <a href="/info/18696">концентрацию катализатора</a> крекинга.
    Установки каталитического крекинга. Реакции, протекающие при каталитическом крекинге нефтяного сырья, в основном аналогичны реакциям, протекающим при термическом крекинге. Однако применение катализаторов, ускоряющих химическую реакцию, существенно изменяет характер процесса. Широкое распространение получили два типа установок в которых каталитический крекинг сырья и регенерация катализатора осуществляются в сплошном, медленно опускающемся слое катализатора, состоящего из шариков диаметром 3—5 мм, и в которых процесс каталитического крекинга и регенерация катализатора протекают в кипящем (псевдоожиженном) слое пылевидного катализатора. К основному оборудованию установок каталитического крекинга относят реакторы, в которых контактируют пары сырья с катализатором регенераторы, в которых происходит восстановление катализатора, и пневмотранспорт, предназначенный для перемещения катализатора из регенератора в реактор и из реактора в регенератор. В пневмотранспорт входят воздуходувки, тонки под давлением для нагрева воздуха, загрузочные устройства (дозеры), стволы пневмоподъемников, сепараторы с циклонами, устройство для удаления крошки, мелких частиц, воздуховоды и катализаторопроводы. Каталитический крекинг нефтяного сырья ведут при давлении 50—150 кПа и температуре 450—500 °С. [c.82]

    Для нефтеперерабатывающей и нефтехимической промышленности выбросы пыли не характерны. Но в этих отраслях имеются процессы, в которых выделяется значительное количество пыли, это прежде всего процессы с использованием твердых катализаторов и адсорбентов. Пыль образуется при транспортировке катализаторов и адсорбентов, их регенерации, измельчении, сушке и т. д. При проведении процессов в реакторах с псевдоожиженным слоем катализатора (каталитический крекинг, дегидрирование бутана) частицы катализатора ири многократном использовании уменьшаются в размерах и выносятся с потоком газов. [c.17]


    Различают два тина крекинга термический крекинг, или термокрекинг, и каталитический крекинг, проводимый в присутствии катализаторов — твердых частиц пористого вещества определенного химического состава и строения. [c.14]

    Вследствие затраты тепла па реакции крекинга температура в рабочей зоне реактора с нисходящим сплошным слоем частиц катализатора понижается по ходу движения крекируемого потока. В реакторах, где частицы катализатора находятся в беспорядочном вихревом движении (крекинг в кипящем слое), происходит выравнивание температур. В таких реакторах температуры в разных точках слоя катализатора отличаются мало. Однако и в этом случае крекинг углеводородов протекает с поглощением тепла. [c.20]

    В процессах каталитического крекинга с кипящим слоем употребляются микросферический катализатор с частицами размером 20—150 микрон II пылевидный с частицами размером 1—150 микрон 2 из активного алюмосиликатного материала. [c.45]

    Первый контур (фиг. 18) применяется на установках с циркуляцией относительно крупных (3—6 мм) частиц катализатора. Вертикальные реактор и регенератор располагаются рядом. Для работы установки требуются два подъемника один для перемещения регенерированного катализатора, второй для транспортировки из реактора в регенератор закоксованного катализатора. Как активный катализатор, так и отработанный вводятся в верхние части аппаратов, а выводятся снизу их. Сырье подается в верхнюю часть реактора и движется прямоточно с катализатором сверху вниз. Из нижней части реактора продукты крекинга поступают в ректификационную колонну. [c.58]

    На многих установках и особенно тех, где крекинг осуществляется в слое пылевидного катализатора, тяжелый газойль смешивается со свежим сырьем также с целью возврата в реактор мелких частиц катализатора, заносимых в ректификационную колонну потоком продуктов реакции. [c.77]

    Отличительной особенностью данной системы крекинга является то, что здесь процесс превращения углеводородов осуществляется в слое мелких частиц твердого катализатора, энергично и непрерывно перемешиваемых в реакторе восходящим потоком паров сырья и продуктов реакции. Регенерация катализатора проводится в отдельном аппарате, но также в слое взвешенных в газовом потоке частиц катализатора. [c.122]

    Крекинг осуществляется с применением как синтетических, так и естественных алюмосиликатных катализаторов, размеры частиц которых (от 20 до 80 микрон) примерно в 100 раз меньше, чем в описанной ранее системе крекинга (см. главу четвертую). [c.122]

    Для лучшего усвоения основ крекинга с применением пылевидных или порошкообразных катализаторов следует рассмотреть поведение слоя мелких твердых частиц катализатора при пропускании снизу вверх через такой слой газа. [c.122]

    Схема движения катализатора, потоков сырья и воздуха на крекинг-установке флюид показана на фиг. 48. Регенерированный горячий катализатор из регенератора 1 самотеком спускается по стояку 2 в узел смешения 3, где он приходит в контакт с предварительно подогретым в змеевиках печи 19 дестиллатным сырьем. При контактировании с горячим катализатором сырье испаряется. Дальше смесь по трубопроводу 4 поступает в реактор 5. Скорость потока в реакторе резко уменьшается, вследствие чего основная масса твердых частиц катализатора осаждается в кипящем плотном слое 6. Высоту уровня плотного слоя устанавливают такой, чтобы обеспечить требуемое время пребывания в нем паров и желаемую глубину их крекинга в присутствии катализатора. Выходящий из плотного слоя газо-паровой поток продуктов крекинга проходит верхнюю часть 7 реактора и расположенные внутри его циклонные сепараторы 8. Значительная часть уносимых частиц катализатора осаждается в верхней половине реактора до поступления потока в циклонные сепараторы. Циклоны служат для более полного отделения частиц и возврата их по трубам 9 иод уровень кипящего слоя в реакторе. Чем ниже скорость потока в верхней части реактора и больше высота этой части, тем полнее газо-паровой [c.123]

    Нижний конец стояка 11 присоединен ко второму узлу смешения 12. Здесь отработанный катализатор подхватывается потоком воздуха и по линии 13 транспортируется в регенератор 1. В регенераторе так е в кипящем слое сжигается кокс, отложившийся при крекинге сырья на частицах катализатора. Регенерированный катализатор отводится через колодец 24 регенератора в стояк 2. В колодце, расположенном над распределительной решеткой 25, [c.124]

    В кипящем слое и реактора и регенератора поддерживаются высокие концентрации катализатора как с целью уменьшения размеров этих аппаратов, так и для достижения нужной глубины крекинга сырья в реакторе и выжига кокса в регенераторе. Чтобы создать необходимую разность давлений, облегчающую циркуляцию массы частиц катализатора, в отводящих трубопроводах (стояки 2 и 11) поддерживают высокую концентрацию катализатора, а в подводящих трубопроводах (4 и 13) низкую. [c.125]


    Вследствие вихревого перемешивания температура в разных точках плотного слоя практически одинакова. Однако при таком перемешивании часть сырья и продуктов реакции слишком глубоко крекируется, что объясняется значительной внутренней циркуляцией больших масс катализатора и углеводородов и слишком долгим пребыванием отдельных порций сырья в зоне крекинга в плотном слое кипящего катализатора. Это является недостатком крекинг-системы флюид. Недостатком является также и то, что из реактора на регенерацию отводятся частицы катализатора с неодинаковым содержанием кокса. Наряду с закоксованными частицами из реактора непрерывно отводятся также частицы с еще достаточно высокой активностью. [c.126]

    Регулярно отбираемые на действующих установках пробы катализатора испытываются на активность, содержание кокса, стойкость против истирания и воздействия водяного пара, загрязнение металлами. Одновременно определяются фракционный состав катализатора (по размеру частиц), удельная поверхность пор, объем и средний диаметр пор. При проверке равновесной активности катализатора путем крекинга сырья серьезное внимание обращают па количество образующегося кокса, поскольку эксплуатационные расходы на заводской установке зависят от его выхода. Снижение выхода кокса уменьшает расход воздуха и энергии на его сжатие, нагрузку и износ циклонных сепараторов, а также сокращает потери катализатора, уносимого в атмосферу газами регенерации. [c.132]

    Пользование объемными единицами для определения величины Уо приемлемо в случае крекинга в стационарном или в опускающемся сплошном слое частиц катализатора, поскольку в таких системах размеры частиц катализатора и плотность слоя практически мало изменяются, [c.18]

    Шариковый катализатор характеризуется значительным сопротивлением истиранию при высоких температурах крекинга и плотно заполняет реакционные аппараты. Благодаря отсутствию острых углов частицы не так сильно измельчаются. [c.38]

    Гранулометрический состав циркулирующего на крекинг-уста-новке равновесного катализатора отличается от фракционного состава свежего катализатора. Зерна его подвергаются истиранию, а непрочные разрушаются. Вместе с тем часть мелких частиц пылевидного катализатора спекается, образуя укрупненные зерна. [c.45]

    Вследствие относительно низкой температуры нагрева сырья в теплообменниках процесс крекинга должен проводиться с высокой кратностью циркуляции катализатора. Не исключен жесткий крекинг с повышенным коксообразованием углеводородных пле нок, покрывающих частицы катализатора в момент смешения их с трудно испаряющимися фракциями сырья. [c.73]

    Процесс крекинга осуществляется при высокой температуре (460—510°), но небольшом давлении (максимум 1,8 ати) с применением синтетических или естественных алюмосиликатных катализаторов, размеры частиц которых (в основном от 20 до 100 микрон) примерно в 100 раз меньше, чем в ранее описанной системе крекинга. Один из контуров циркуляции катализатора на установках флюид изображен на рис. 4. [c.140]

    Чтобы иметь аппараты практически приемлемого размера, а также чтобы уменьшить чисто термическое разложение сырья, процессы его крекинга и сжигания кокса проводят в слое с высокой концентрацией частиц катализатора, т. е. в густой йли плотной фазе. [c.140]

    Катализатор здесь движется вниз, а водяной пар вверх. Часть пара увлекается опускающимся потоком катализатора в стояк. Молекулы углеводородов легко вытесняются из промежутков между твердыми частицами и трудно (особенно высококипящи углеводороды) из пор. Полагают, что в отпарной секции из пор-катализатора удаляются не столько углеводороды с высоким молекулярным весом, сколько легкие продукты их крекинга, так как в этой секции продолжается процесс расщепления адсорбированных соединений [225, 228, 2.35]. [c.152]

    Известны крекинг-установки флюид, регенераторы которых оборудованы внутренними змеевиками последние используются для перегрева-водяного пара и его производства из конденсата [175]. Коэффициент теплоотдачи от плотного слоя частиц катализатора, интенсивно перемешиваемых газами, к погруженной в спой вертикальной цилиндрической трубе довольно высок. Обычно этот коэффициент равен 240—600 ккал/м час град [227]. Коэффициент теплопередачи от псевдоожиженной массы частиц катализатора к па- [c.164]

    Пористость слоя частиц широкого гранулометрического состава неправильной формы зависит также от формы и размера частиц. Так, с уд[оныиопиеи среднего диаметра частиц катализатора крекинга пористость слоя возрастает до диаметра 800 мк, затем до диаметра 500 мк пористость снижается. С дальнейшим уменьшением диаметра частиц пористость вновь возрастает. [c.60]

    Наиболее широкое применение получили в настоящее вролш установки каталитического крекинга с кипящим слоем катализатора.. На этих установках применяется порошкообразный или микросферический катализатор с размером частиц 20—120 мк. Существует ряд промышленных систем каталитического крекинга в кипящем слое, от.пичающихся взаимным расположением реактора и регенератора, системой нпевмотрапснорта и деталями внутренних устройств. [c.286]

    Советские ученые Лавровский и Бродский [91—92] разработали крекинг в кипящем слое (рис. 11), подобный процессу фирмы Lurgi, только теплоносителем служат частицы кокса. Коксовые частицы нагреваются в подогревателе горячими отработанными газами, которые получают сжиганием смеси нефти с воздухом в топочной камере, и направляются в реактор вместе с водяным паром. Непосредственно перед входом в реактор подводится сырье (газообразные или легкоиспаряющиеся углеводороды), которое движется в прямотоке с коксовыми частицами. После выхода из реактора частицы кокса пневмотранспортом возвращаются в подогреватель. [c.35]

    Центробежные обеспыливающие устройства (циклоны). Широко применяют для очистки различных газов от пыли, в частности, в процессах каталитического крекинга и дегидрирования бутана в кипящем слое катализатора. Частицы пыли выделяются в циклоне под действием центробежной силы в нроцессе вращения газового потока в корпусе аппарата. Циклон (рис. 7) состоит нз цилиндричсско1 трубы и суживающегося книзу конуса. Запыленный газ вводится в циклон по спирали (таигеици-альный ввод). Под действием центробежной силы в процессе вращения газового потока в корпусе аппарата частицы пыли отбрасываются к стенкам циклона и ио ним опускаются в коническую часть. Эффективность очистки зависит от скорости газового потока (при прочих равных условиях) чем выше скорость газа, тем выше ее эффективность, тем меньше габариты аппарата, [c.42]

    В химической промышленности электрофильтры используют в производстве серной кислоты, горячего фосфора, фосфорной кислоты и др. В нефтеперерабатывающей и нефтехимической промышленности их широко применяют для очистки от частиц катализатора газов, выбрасываемых в атмосферу в процессах каталитического крекинга н дегидрирования, улавливания ожи-жен1юго катализатора в производстве высокооктанового бензина. [c.47]

    Вследствие относительно низкой температуры нагрева сырья в теплообменниках процесс крекинга должен проводиться с высокой кратностью циркуляции катализатора. В связи с жестким крекингом углеводородных пленок, покрывающих частицы катализатора в момент смешения нх с трз дноиспаряющимися фракциями сырья, увеличивается выход кокса. [c.37]

    Синтетические алюмосиликатные катализаторы — микросфе-рические и пылевидные (частицы диаметром преимущественно от 20 до 100 микрон). Специально изготавливается синтетический микросферический катализатор, а пылевидный является отходом установок каталитического крекинга и катализаторных фабрик или в некоторых случаях его получают путем измельчения и рассева крупных гранул алюмосиликатного катализатора. [c.49]

    Крекинг нефтяных фракхщй сопровождается отложением кокса на развитой поверхности катализатора. Кокс, образующийся в неконцентрировапном и неудобном для извлечения виде, является единственным продуктом процесса, который не выводится с установки, а сжигается при контролируемых условиях в потоке воздуха в регенераторе. Газы регенерации — продукты сгорания кокса, легко отделяемые от массы твердых частиц катализатора, отводятся в атмосферу. Регенерированный, в значительной степени освобожденный от кокса катализатор снова используют в процессе крекинга. Характерной особенностью каталитического крекинг-процесса являются часгая регенерация катализатора и многократное его использование для превращения сырья. [c.6]

    Значительное количество воздуха давлением 0,2—1,6 ати расходуется на регенерацию н пневмотранспорт катализатора, на осуществление непрерывной циркуляции его в пределах крекинг-установки. Кроме того, на многих установках воздух используют для отвеивания катализатора от мелких частиц и загрузки свежего катализатора из хранилища в регенератор или систему пневмоподъема. [c.12]

    Крекинг в псевдоожиженнсм или кипящем слое — крекинг-процесс, проходящий в слое мелких, легко подвижных а находящихся в турбулентном движении частиц твердого катализатора. Кииящяй или псевдоожиженный слой создается путем пропускания с определенной скоростью спизу вверх потока газа или паров через массу частиц сыпучего материала, например микросферического или пылевидного катализатора. [c.18]

    Селективность и активность зависят не только от структуры поверхности и состава катализатора, но и от размера его частиц, а также объема и диаметра пор. Скорость диффузпи начальных и конечных молекул и течение процесса крекинга изменяются с измельчением катализатора. По результатам испытаний несколь- ких образцов было показано, что избирательность и активность алюмосиликатного шарикового катализатора улучшаются с уменьшенпем размера частиц и увеличением обч.ема и размера пор 251]. [c.27]

    Пыль и слишком мелкие частицы должны выводиться из системы, так как их накопление в циркулирующей массе увеличивает гидравлическое сопротивление слоев катализатора и сопря-жено с чрезмерным уносом катализаторной кроппш потоком продуктов крекинга в ректификационную колонну, а газами регенерации в дымоходы. [c.45]

    На многих крекинг-установках флюид измельчение укрупненных частиц катализатора ироизводится в струйных, работакицих на водяном паре аппаратах, которые рассматриваются как весьма эффективное средство для регулирования гранулометричсскм еег-става катализатора в кипящем слое [109.  [c.46]

    Крекинг-установки с циркулирующими пылевидным и микросферическим катализаторами широко распространены в нефтеперерабатывающей промышленности. Их отличительной особенностью, -является то, что на таких установках процессы крекинга и реге- ыерации осуществляются в слое взвешенных мелких частиц ката- [c.139]

    Латинское слово Пш(1из означает текучий. Термин флюид широко срименяе чя для наименования процесса крекинга, проводимого в псевдо-<)ЖИЖзнном слое мелких частиц твердого катализатора. [c.139]

    При дальнейшем повышеиии скорости газа частицы начинают энергично перемешиваться и быстро менять положение относительно друг друга. Расстояния между ними увеличиваются, и слой расширяется еще больше. Часть наиболее быстро движущихся твердых частиц вылетает из слоя. Такой слой катализатора с довольно четко обозначенным уровнем взвешенных в газе частиц напоми нает кипящую жидкость. Это состояние называют турбулентной флюидизацией. Па современных установках второй подгруппы процессы крекинга сырья и регенерации катализатора осуществляют в псевдокипящем слое взвеси, т. е. при режиме турбулентной флюидизации. [c.140]


Смотреть страницы где упоминается термин Частицы крекинга: [c.136]    [c.282]    [c.77]    [c.6]    [c.42]    [c.7]    [c.94]    [c.148]   
Процессы в кипящем слое (1958) -- [ c.177 ]




ПОИСК







© 2025 chem21.info Реклама на сайте