Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водород электронные конфигурации

    Простое вещество. Подобно водороду фтор образует двухатомные молекулы Ра, что соответствует следующей электронной конфигурации  [c.281]

    Атом водорода Н имеет всего один электрон, который в основном состоянии должен занимать Ь-орбиталь. Поэтому электронная конфигурация атома водорода записывается как Ь (сверху указывается число электронов на орбитали), а схематически изображается следующим образом  [c.391]


    Теория Льюиса впервые позволила понять образование связи между одинаковыми атомами, как, например, в Н2 или р2. Два атома водорода обобществляют свои электроны, чтобы каждый из них приобрел завершенную электронную конфигурацию Не символически это можно изобразить так  [c.466]

    Основному состоянию атома Ве отвечает электронная конфигурация 15 252. 3 химических соединениях бериллий двухвалентен, поэтому его валентному состоянию обычно сопоставляют конфигурацию 15 25 2р (о понятии валентного состояния см. далее). Тогда в образовании химических связей в молекуле ВеНа будут участвовать четыре валентных АО ф1 = 2 и Ф2 = 2рх АО атома бериллия и фз = 1 5а и ф< 1 АО атомов водорода.  [c.159]

    В соответствии с электронной конфигурацией атома водорода Is возможны процессы, обусловленные сдвигом его электрона к более электроотрицательному атому, и, наоборот, характерны процессы со смещением электрона к атому водорода (стремление образовать замкнутую оболочку Is ). Таким образом, для Н характерны аи = —1,0, -fl, т. е. он может вести себя аналогично и элементам подгруппы IA, и элементам подгруппы VHA. С первым его объединяет сходство атомных спектров, тенденция к образованию в растворе Н+ (отсюда восстановительная,активность, в частности склонность вытеснять неактивные металлы из различных соединений, в том числе, обычно под давлением, из растворов Цх солей), а также способность взаимодействовать с неметаллами. [c.463]

    Теория поля лигандов. В теории поля лигандов учитывают электронные конфигурации лигандов и изменение этих конфигураций при комплексообразовании (координировании). В этой теории в соответствии с методом МО комплекс рассматривается как единое целое, в котором отдельные атомы нли молекулы теряют свои индивидуальные черты. Например, комплекс [Со(МНз)вР+ представляется в виде скелета из шести ядер азота, 18 ядер водорода и ядра кобальта, в поле которых движутся 84 электрона. [c.49]

    При растворении А г металла, расположенного в четвертой группе Периодической системы и имеюш,его электронную конфигурацию 2, 8, 16, 7, в воде образуется окисел металла и выделяется атомарный водород. Объем последнего при нормальных условиях составляет Б л. Определите, какой металл взят. Какие ошибки (5) допущены в условии  [c.80]

    Пользуясь методом ЛКАО — МО, определите число и форму орбиталей молекулы фторида водорода. Постройте приближенную диаграмму энергетических уровней молекулы и приведите ее электронную конфигурацию. Энергии орбиталей водорода и фтора [c.9]


    В чем заключается сходство и различие электронных конфигураций атома водорода, с одной стороны, и атомов элементов главных подгрупп первой, четвертой и седьмой групп — с другой  [c.469]

    Положение сигнала, или энергия связи электрона Есв, измеряемая в спектре, определяется, как уже указывалось, прежде всего электронной конфигурацией атома. Таким образом, полный фотоэлектронный спектр атома представляет собой набор сигналов, соответствующих 5-, р-, (1-, электронам оболочек атомного остова, как показано, например, для металлического кобальта на рис. VI.4. Атом в молекуле какого-то вещества характеризуется спектром, близким по виду к его спектру в веществе сравнения, хотя сигналы могут быть несколько сдвинуты. Атомы всех элементов, исключая водород и гелий, могут идентифицироваться и определяться по фотоэлектронному спектру (методами РЭС, ОЭС и др.). Некоторые удобные для идентификации линии ряда элементов приведены в табл. IV. 1. [c.140]

    Наиболее устойчивое состояние электрона в атоме соответствует минимальному возможному значению его энергии. Любое другое его состояние является возбужденным, неустойчивым из него электрон самопроизвольно переходит в состояние с более низкой энергией. Поэтому в невозбужденном атоме водорода (заряд ядра 2 = 1) единственный электрон находится в самом низком из возможных энергетических состояний, т. е. на 18-подуровне. Электронную конфигурацию атома водорода можно записать как 1 или представить схемой  [c.64]

    Типичным таким атомом является водород. Действительно, известно соединение состава СН2. Из электронной конфигурации атома углерода также следует, что в соединениях с атомами-донорами электронных пар его ковалентность может увеличиться на 1, углерод будет трехковалентным. Это проявляется, например, в молекуле СО (подробнее см. ниже). [c.121]

    Строение двухатомных молекул состава НЭ. Метод МО позволяет легко объяснить прочность и реакционную способность молекул состава НЭ, где Э — элемент главной подгруппы VII группы периодической системы. В соответствии с электронными конфигурациями атомов водорода 1Н и, например, хлора 17 С1... Зз р или подробнее. .. Зв р Ру р  [c.126]

    Здесь к активным металлам относятся металлы, имеющие значения стандартных окислительно-восстановительных потенциалов от наиболее отрицательного значения до потенциала алюминия. Это, в основном, все а-элементы и элементы, атомы которых имеют электронную конфигурацию Э. .. (п - 1) пз . К металлам средней активности относят металлы, располагающиеся по значениям стандартных электродных потенциалов между алюминием и водородом. В основном, это остальные металлы, атомы которых не испытывают ни лантаноидного сжатия, ни релятивистской стабилизации внешних -электронов. Наконец, малоактивные металлы имеют положительные значения стандартного электродного потенциала. Их элементы располагаются либо в шестом периоде (значит, испытывают лантаноидное сжатие и релятивистскую стабилизацию), либо относятся к элементам, где релятивистские эффекты не скомпенсированы другими электронными эффектами (В1, Си, Hg, Ag, Р1, Ли). [c.330]

    Примером гетеронуклеарных двухатомных молекул е ядрами, сильно отличающимися по величине эффективного заряда, могут служить молекулы гидридов. Рассмотрим молекулу НР. Электронные конфигурации атомов Н[151, Р[18 25 2р 1. Энергии 18-А0 (Н) и 2р-А0 (Р) близки, и связывающая а-орбиталь может быть представлена как линейная комбинация 15-орбитали атома водорода и 2р -орбитали атома фтора, имеющих одинаковые свойства симметрии относительно оси молекулы. Упрощая, можно считать, что все электроны фтора, кроме 2р г, сохраняют свой атомный характер 15- и 25-орбитали не комбинируют с 15-орбиталью атома Н вследствие большого отличия от нее по энергии. АО 2р и 2р не комбинируют из-за различия по симметрии относительно оси молекулы. Все эти орбитали становятся [c.83]

    Энергетическая диаграмма уровней молекулы ВеНз приведена на рис. 38. В соответствии с большей электроотрицательностью водорода его орбитали в схеме расположены ниже бериллия. Четыре валентных электрона невозбужденной молекулы ВеНз (два электрона от атома бериллия и два от двух атомов водорода) располагаются на а - и оГ-орбиталях, что описывается электронной конфигурацией [c.60]

    Простые вещества. Имея один электрон, водород образует лишь двухатомные молекулы с электронной конфигурацией невозбужденного состояния При этом возможны молекулы легкого водорода — протия И 2, тяжелого водорода — дейтерия Ог, трития Тг, протодейтерия HD, прототрития НТ, дейтеротрития DT. [c.273]

    Из трех мопекул, обсуждавшихся в предыдущем разделе, только СН4 имеет электронную конфигурацию замкнутой валентной оболочки. При обычных те.мпературах и давлениях ВеНз, а также ВН3 используют свои вакантные валентные орбитали для образования более крупных молекулярных агрегатов. Гидрид бериллия при нормальных условиях представляет собой твердое вещество, в котором атомы водорода обобществляют [c.557]

    Молекулярный водород активируется растворами ряда неорганических комплексов Ре, Со, Си, Ни, НН, Рс1, Ag и [92], и некоторые комплексы переходных металлов с электронной конфигурацией от до оказались катализаторами гидрогенизации. Превосходный обзор на эту тему был недавно опубликован Халперном [93]. Мы уже упоминали, что водород встречается в качестве лиганда в некоторых стабильных комплексах с л-связанными лигандами (РКз, N , СО) (разд. 11.1.В), но эти комплексы не были образованы газообразным Нг и они не активны как катализаторы гидрогенизации. [c.99]


    Монооксид ванадия V0 получают восстано влением V2O5 водородом при 1700 °С, NbO и ТаО — восстановлением Э2О5 углеродом при 1100°С и при пониженном давлении. V0 — соединение переменного сос"ава (VOo,85-i,25) ои растворяется в разбавленных кислотах с образованием соответствующих солей, содержащих октаэдрические комплексные катионы [У(Н20)б] с электронной конфигурацией При обработке этих солей щелочью выпадает осадок V (ОН) 2, легко окисляющийся на воздухе. [c.518]

    В основу построения электронных конфигураций многоэлектронных молекул с одинаковыми ядрами положена система орбиталей одноэлектроной молекулы Н5. Использовав для построения двух МО Н2 базис из двух Ь-АО, мы получили фз - и ф -орбитали. Для получения большего числа орбиталей, необходимых для размещения многих электронов гомонуклеарных молекул, надо привлечь большее число АО. Так, используя Ь-, 25-, 2р -, 2ру- и гр -орбитали двух атомов водорода, получаем систему из 10 МО молекулы Н2. Молекулярные орбитали систематизируются по энергии, связывающим свойствам и симметрии. [c.71]

    Пусть Б реакции ароматического замещения реагент г атакует атом р, углерода субстрата. Последний становится связанным не только с отщепляющимся атомом водорода, но и с приближающимся заместителем г. В результате атакуемый атом углерода субстрата переходит из зр - в хр -гибридное состояние. Будучи в хр -гибридном состоянии, атом С выбывает из системы сопряжения и, в зависимости от природы заместителя г, на этом атоме локализуется ноль, один или два 2рг-электронов из делокализованных я-электронов. Структура с такой я-электронной конфигурацией называется комплексом Уэйланда в методе ЭЛ этот комплекс рассматривается как гипотетический активированный комплекс реакции. Ниже изображен комплекс Уэйланда (дуга отделяет fx-тый центр комплекса от делокализованных [c.62]

    Часто каталитические свойства металла или сплава зависят от их способности хемосорбировать определенные компоненты среды. Поэтому неудивительно, что переходные металлы обычно являются хорошими катализаторами и что электронные конфигурации в сплавах, благоприятствующие каталитической активности и пассивации, сходны между собой. Например, если палладий, содержащий 0,6 -электронных вакансий на атом в металлическом состоянии, катодно насыщен водородом, он теряет свою каталитическую активность для ор/по-па/>а-водородной конверсии [59] -уровень заполнен электронами растворенного водорода, и металл не может больше хемосорбировать водород. По каталитической эффективности Рё—Аи-сплавы аналогичны палладию, пока не достигнут критический состав 60 ат. % Аи. При этом и большем содержании золота сплав становится слабым катализатором. Золото, будучи непереходным металлом, снабжает электронами незаполненный уровень палладия магнитные измерения подтверждают, что -уровень заполнен при критической концентрации золота. Результаты исследований каталитического влияния медно-никелевых сплавов различного состава на реакцию 2ННа представлены на рис. 5.17. При 60 ат. % Си и [c.98]

    В различных вариантах таблицы Периодической системы водород включается либо в первую, либо в седьмую группы элементов, либо одновременно в обе. Более обосновано помещение водорода в седьмую группу. Подобно галогенам, он способен присоединять. тишь один электрон до завершения устойчивой электронной конфигурации. При этом водород, как и галогены, образует солеподобные соединения с наиболее актигин ,1ии металлами (гидриды), например NaH, СаНг. Гидриды — ионные соединения, п которых отрицательным ионом является Н . Ближе к галогенам водород и по физическим свойствам. [c.206]

    С элементами первой группы его роднит одинаковая к.ои-фнгурация внешнего электронного слоя. Однако это родство носит лишь формальный характер, так как электронная конфигурация атома водорода вообще не имеет аналогов атом водорода, лишенный электрона, представляет собой голый протон. [c.206]

    Металлы VI—VIII групп по отношению к водороду малоактивны. Так, энтальпия образования РеНа всего —0,84 кдж/г-форм. Исключение составляет палладий, который поглощает водород очень активно. Аномальное поведение палладия связывают с его уникальной электронной конфигурацией — провал двух бз-электронов). [c.295]

    В свободном атоме кислорода электронная конфигурация 2-го от ядра слоя такова 25 , 2рг , 2р/, 2рх при этом плотность заряда 25 пары электронов распределена по сфере около внутренней электронной оболочки, а плотность заряда 2рг , 2ру, 2р электронов распределяется симметрично около взаимно перпендикулярных осей X, у, г. При связывании двух атомов водорода 2ру-, 2рж-орбн-талями угол 90° увеличивается вследствие электростатического отталкивания, и это возмущение приводит к увеличению гибридизации, Валентный угол, соответствующий минимуму потенциальной энергии молекулы, при участии х-электронов в валентном состоянии, проходящий через максимальную электронную плотность, уве- [c.8]

    Атом с номером 1, водород. У него всего один элек-фон, расно-ложенный на 1-м уровне, на з-нодуровне. Спин +1/2, Электронная конфигурация 1з. Цифра в строке обозначает номер уровня, буква - подуровень, верхний правый индекс - число электронов на данном подуровне этого уровня. Конфигурацию внешнего уровня также можно изобразить схемой, аналогичной схеме 1, изобразив элек-фон с помощью стрелки (см. схему 2). [c.39]

    В качестве примера определения геометрической конфигурации молекул, содержащих неэквивалентные электронные пары рассмотрим строение молекулы аммиака NHз. В данной молекуле азот (электронная конфигурация 7N... 25 2р 2р 2р ) и три атома водорода ( И 1з ) образуют за счет (1 + 1)-взаимодействий 3 поделенные электронные пары. Четвертая — неподеленная электронная пара принадлежала атому азота и до образования связей. Таким образом, на электронной оболочке азота в молекуле NHз находятся 4 электронные пары. Если бы все эти пары были эквивалентными, то они распо.пагались бы [c.134]

    В отличие от з-элементов 1А- и ПА-подгрупп отдельные р-элементы, водород и гелий встречаются в природе в виде простых веществ. К щироко распространенным относятся кислород, кремний, алюминий и водород. Обобщенные электронные конфигурации внещних и предвнещних электронных оболочек атомов р-элементов представлены в табл. 15.1. [c.394]

    Механизм образования химической связи удобнее всего рассмотреть на примере образования молекулы водорода из атомов. Формула электронной конфигурации ато1 водорода — 15, т. е. у него имеется только один неспарен ный электрон. В соответствии с законами квантовой механики атом водорода, содержащий неспаренный электрон, находится в неустойчивом состоянии, поскольку обладает избытком потенциальной энергии. Такой атом будет притягивать к себе другой атом водорода при условии, если спин его электрона имеет противоположное направление. Взаимное притяжение атомов приводит к тому, что их атомные орбитали перекроются, при этом оба электрона станут в равной мере принадлежать обоим атомам, т. е. образуется пара электронов с противоположно направленными спинами, которая осуществляет химическую связь. Электронное облако, образуемое этой парой электронов, охватывает, связывает воедино ядра обоих взаимодействующих атомов. Такая связывающая два одинаковых атома двухэлектронная связь называется ковалентной. [c.69]


Смотреть страницы где упоминается термин Водород электронные конфигурации: [c.49]    [c.280]    [c.514]    [c.59]    [c.95]    [c.54]    [c.139]    [c.8]    [c.186]    [c.197]    [c.196]    [c.95]    [c.129]    [c.159]   
Методы получения и некоторые простые реакции присоединения альдегидов и кетонов Ч.1 (0) -- [ c.21 , c.65 , c.66 ]




ПОИСК





Смотрите так же термины и статьи:

Электрон конфигурации

Электронная конфигурация



© 2025 chem21.info Реклама на сайте