Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метод МО ЛКАО

    Начиная с 50-х годов, получило развитие новое направление в разработке методов оценки реакционной способности молекул на основе представлений квантовой теории химической связи. Особенностью этого направления являются определение реакционных центров в молекулах исходя из молекулярной структуры и разработка методов оценки относительной реакционной способности молекул. Так, в методе Хюккеля реакционная способность молекул качественно характеризуется индексами реакционной способности плотностью электронного заряда, индексом свободной валентности, энергией делокализации и др. (см. 37). В методе МО ЛКАО была показана особая роль граничных молекулярных орбиталей. В 60-х годах Вудвордом и Хоффманом было сформулировано правило сохранения орбитальной симметрии в синхронно протекающих элементарных химических актах. Все эти положения получили логическое завершение в методе возмущенных молекулярных орбиталей (метод ВМО). [c.583]


    ТЕОРИЯ ХИМИЧЕСКОЙ СВЯЗИ, МЕТОД МО ЛКАО [c.10]

    Теория поля лигандов (метод МО ЛКАО). Теория МО ЛКАО получила в химии координационных соединений название теории поля лигандов. В методе МО ЛКАО принимают, что электроны движутся в поле, создаваемом лигандами и центральным ионом. Молекулярную орбиталь гр можно представить как линейную комбинацию АО центрального иона (хг) и атомных орбиталей лигандов (хь ) = =Можно рассматривать линейную комбинацию АО лигандов как одну так называемую групповую орбиталь Тогда искомая МО примет вид Групповая орбиталь ли- [c.125]

    Рассмотрим особенности метода МО ЛКАО на примере молекулярного иона Нг —самой простой из двухатомных молекул, содержащей один-единственный электрон. Для нее выполнено точное решение уравнения Шредингера. Оно дает значения и совпадающие с опытом. Это показывает, что принципиально уравнение Шредингера применимо для описания поведения электрона не только в атомах, но и в молекулах. [c.62]

    Молекула Н2+ в методе МО ЛКАО. Ковалентная связь [c.68]

    Молекулярную волновую функцию в орбитальном приближении строят из молекулярных орбиталей. Приближенное же выражение для каждой из МО обычно находят как линейную комбинацию АО. Такой способ построения молекулярной волновой функции получил название метода МО ЛКАО. [c.60]

    Чтобы не отягощать читателя громоздкими математическими формулами, обратимся к сравнительно простому случаю Л -электронной молекулярной систе мы с замкнутыми оболочками, которую будем рассматривать в однодетерминантном варианте метода МО ЛКАО. Тогда координатная матрица плотности первого порядка (а другие нам в этом разделе не понадобятся) с учетом формул (49), (50) и (69) примет вид  [c.217]

    Выражение для волновой функции электрона в молекуле по методу МО ЛКАО записывается в виде [c.100]

    Весьма подробная информация о механизме реакции (18.1) может быть получена путем расчета поверхности потенциальной энергии. Заметный прогресс в этом направлении наметился в последнее время в связи с упомянутыми выше работами Базилевского, где обращается внимание на то, что применение полуэмпирических вариантов метода МО, явно не учитывающих неортогональность базисных функций (например, метод Хюккеля и др.), не позволяют дать правильную картину взаимодействия реагентов. На основе таких методов удается объяснить лишь притяжение между ними (этот эффект является наиболее существенным, когда расстояния между атомами частиц незначительно превосходят равновесные). Между тем при расстояниях, которые значительно превосходят равновесные, но меньше радиуса действия сил Ван-дер-Ваальса, наблюдается отталкивание между частицами. Это отталкивание можно описать, принимая во внимание неортогональность базисных функций. Поэтому во всех вариантах метода МО, где неортогональность явно не учитывается, не учитывается и эффект отталкивания. Последовательный учет неортогональности АО в методе МО ЛКАО в л-электронном приближении позволил Базилевскому представить потенциальную энергию реагентов в виде суммы, учитывающей энергии притяжения и отталкивания между ними, причем слагаемые этой суммы вычисляются в рамках теории МО при любом расположении атомов исходных частиц. Определение функции (2.3) является основой расчета кинетических параметров А к. Е. [c.177]


    Приближенное описание молекулярной орбитали в методе МО ЛКАО [c.60]

    Молекула Н2+ в методе МО ЛКАО. Расчет энергии и волновой функции по вариационному методу [c.62]

    Чтобы ознакомиться с характерными особенностями метода МО ЛКАО, рассмотрим приближенное решение для Н2. При этом теория простейшей молекулы Нг послужит исходным пунктом для теории более сложных молекул, как теория атома Н —для теории многоэлектронных атомов. [c.62]

    ДВУХАТОМНЫЕ МОЛЕКУЛЫ В МЕТОДЕ МО ЛКАО [c.71]

    Ценность метода МО ЛКАО может быть ярко продемонстрирована на примере двухатомных молекул. На рис. 25 представлены электронные конфигурации гомонуклеарных молекул, образованных атомами элементов второго периода. Рассмотрим отдельные молекулы. [c.78]

    Для расчета электронной структуры сложных молекул метод МО ЛКАО в наиболее общей форме был развит Рутаном [75, 85, 86] на основе идей Хартри и Фока. Полученные Рутаном уравнения имеют вид, аналогичный (4.3) и (4.4). Отличие состоит в том, что матричные элементы включают наряду с молекулярными интегралами типа (4.5) и (4.6), которые могут быть вычислены, коэффициенты Сд/, которые неизвестны с самого начала. Решение уравнений Рутана проводится методом итераций, т. е. по заданному набору коэффициентов с г находятся и е , а затем по е с помощью (4.3) отыскивается новый набор с г, и такая процедура повторяется до совпадения предыдущего результата с последующим. Итерационный метод получил название метода самосогласованного поля (в литературе метод Рутана принято называть сокращенно методом ССП МО ЛКАО). [c.54]

    Молекулярные ионы. Метод МО ЛКАО хорошо объясняет сравнительную устойчивость молекул и их ионов. Так, ион N2 менее прочен, [c.80]

    По методу МО ЛКАО формула N0 следующая  [c.161]

    ЭЛЕМЕНТЫ КВАНТОВОЙ ХИМИИ. ТЕОРИЯ ХИМИЧЕСКОИ СВЯЗИ, МЕТОД МО ЛКАО [c.8]

    Извлечение структурной информации из экспериментальных данных по спектрам ЭПР, т. е. решение соответствующей обратной задачи, основывается на рассмотрении связи спектра со структурой, которая проводится обычно в рамках метода МО ЛКАО. Как уже говорилось, по величине и знаку -фактора (изотропные системы) или компонентам -тензора судят о характере парамагнитной частицы, ее заряде и распределении электронной плотности. Даже в органических (углеводородных) радикалах, у которых --фактор близок к спиновому значению, по нему все-таки можно различать, например, положительные и отрицательные ион-радикалы он больше у отрицательных ионов. [c.68]

    N=0—СН=СН2), то присоединение происходит в порядке, обратном указанному правилом Марковникова. Расчет электронной структуры молекул субстрата методом МО ЛКАО подтверждает эти общие соображения о деформации электронного облака и зарядах на атомах, а также позволяет установить корреляцию между электронной структурой субстрата и его поведением в гетеролитических реакциях [94]. [c.168]

    Применение метода МО ЛКАО к молекулярному иону водорода и молекуле водорода [c.25]

    На практике используют так называемый метод МО ЛКАО, когда молекулярные орбитали выбираются в виде линейной комбинации атомных орбиталей. Почти все исследователи, применявшие метод МО ЛКАО для катализа, использовали. полуэмпирический метод Малликена — Вольфсберга — Гельмгольца (МВГ) или близкий к нему расширенный метод Хюккеля (РМХ) [c.459]

    Для уяснения физического смысла такого подхода вспомним, что волновая функция Ф соответствует амплитуде волнового процесса, характеризующего состояние электрона. Как известно, при взаимодействии, например, звуковых или электромагнитных волн их амплитуды складываются. Как видно, приведенное уравнение разложения МО на составляющие АО равносильно предположению, что амплитуды молекулярной электронной волны (т. е. молекулярная волновая функция) тоже образуются сложением амплитуд взаимодействующих атомных электронных волн (т. е. сложением атомных волновых функций). При этом, однако, под влиянием силовых полей ядер и электронов соседних атомов волновая функция каждого атомного электрона изменяется по сравнению с исходной волновой функцией этого электрона в изолированном атоме. В методе МО ЛКАО эти изменения учитываются путем введения коэффициентов С , где индекс г определяет конкретную МО, а индекс ц — конкретную АО. Так что при нахождении молекулярной волновой функции складываются не исходные, а измененные амплитуды — Сщ-ф) . [c.107]

    Основная проблема метода МО — нахождение волиопых функций, описывающих состояние электронов на молекулярных срб 1-талях. В наиболее распространенном варианте этого метода, получившем сокращенное обозначение метод МО ЛКАО (молекулярные орбитали, линейная комбинация атомных орбиталей), эта задача решается следующим образом. [c.143]

    В связи с первым вопросом следует отметить, что если рассматривается изолированный атом, то рба типа АО — и комплексные, и-вещественные — могут испрльзоваться в равной мере. (Для расчетов мощ-кул по методу МО ЛКАО —см. далее —более удобными оказываются вещественные АО). [c.89]


    Ниже мы расскажем об одном из вариантов кван-товохимической интерпретации понятия валентности в рамках метода МО ЛКАО. С целью упрощения математического формализма мы, как и ранее, ограничимся молекулярными системами с замкнутыми электронными оболочками (iV электронов на N/2 МО), [c.221]

    При использовании метода МО ЛКАО электронное строение молекул обычно рассматривают, исходя из определенного, известного пз эксперимента расположения атомных ядер. Для системы атомных ядер мысленно закрепленной в равновесных положениях, находят молекулярные орбитали и их уровнн энергии. Затем заселяют МО электронами, учитывая при этом, что на каждой МО может находиться не более двух электронов. При рассмотрении устойчивого (нормального) состояния молекулы нужно заполнять электронами все энергетические уровни без пропусков в порядке возрастания энергии, начиная с наиболее низких. [c.103]

    Межъядерная ось г для 5- и р -орбиталей служит осью симметрии бесконечного порядка Соо адля р .-орбитали —осью симметрии второго порядка Са. Поэтому атомные орбитали 5 и 5, и х могут, а орбитали 5 и /7 не могут комбинировать между собой. При наложении 5- и /7ж-орбиталей возникают две области перекрывания, равные по величине и противоположные по знаку, и суммарное перекрывание оказывается равным нулю (рис. 20, в). Разрешенные комбинации АО в методе МО ЛКАО (ось г —межъядерная ось двухатомной молекулы) приведены ниже. [c.62]

    Анализ электронных конфигураций гомонуклеарных молекул показывает, насколько хорошим приближением к реальности служит описание электронной структуры в методе МО ЛКАО. Вместе с тем имеетея ряд опытных данных, не объяснимых без учета отталкивания между электронами. [c.82]

    Рассмотрим соединения, такие, как ВаНв, получившие в методе ВС название молекул с дефицитом электронов. При наличии п связей в структурной формуле этих молекул число валентных электронов т< 2/г. Это создает трудность объяснения электронной структуры в методе ВС, где для каждой связи требуется пара электронов. Кроме того, в бороводородах имеются так называемые водородные мостики, где один атом Н связан с двумя атомами бора, несмотря на наличие у него только одного электрона. В методе МО ЛКАО бороводороды и им подобные соединения не требуют особого выделения, в них как раз столько валентных электронов, сколько нужно для заполнения всех связывающих МО. Например, в молекуле ВаНд [c.102]

    Н, один из которых расположен над плоскостью а , другой — под ней. Молекулярные орбитали строим обычным способом, остовные 1з-орбитали атома бора и в молекуле сохраняют свой одноцентровый атомный характер из оставшихся восьми валентных АО двух атомов В (25, 2ру, 2ру, 2рг) и шести Ь-АО атомов Н получим 14 МО — две несвязывающие, шесть связывающих и шесть разрыхляющих. Из 16 электронов молекулы ВзНв четыре занимают две остовные орбитали у атомов В, остальные 12 заполняют все шесть связывающих МО. Отсюда и устойчивость молекулы. Аналогично структура и свойства других молекул бороводородов, карбидов бора и карборанов хорошо описываются в методе МО ЛКАО исходя из представления [c.102]

    Физически предположение (4.1) связано с тем, что в окрестности ядра состояние молекулярного электрона г) должно быть подобным состоянию атомного электрона ф . Совершенно аналогично вблизи другого ядра V состояние молекул рного электрона имеет сходство с состоянием фг и т. д. Такое предположение соответствует действительности, когда атомы молекулы находятся на больших расстояниях друг от друга. Опыт показывает, что при соединении атомов в молекулу изменение состояния электрона в молекуле по сравнению с исходным состоянием можно считать не селишком большим. Поэтому приближенно МО в окрестности данного атома весьма близка по своим свойствам к соответствующей АО, что и отражает соотношение (4.1). Коэффициенты разложения (4.1) являющиеся мерой вклада отдельных АО в МО, позволяют определить специфику свойств молекулярного электрона (в первую очередь особенности его делокализации по всей молекуле) по сравнению с атомными электронами (последние локализованы на своих ядрах). Метод определения МО в виде (4.1) называется методом МО ЛКАО. [c.52]

    Следует сказать несколько слов об эффективном операторе Гамильтона с %фф. Предполагается, что каждый электрон обладает кинетической энергией и находится в некотором эффективном поле, которое создается всеми остальнымм электронами и ядрами молекулы. Точный вид в простых вариантах метода МО ЛКАО не опре- [c.52]

    В последнее время в теории координационных соединений получили развитие полуэмпирические методы МО ЛКАО, в которых наиболее сложные для вычислений интегралы аппроксимируются известными из опыта данными. Наиболее широкое распространение получил полуэмпирический метод Малйкена — Вольфсбергера — Гельмгольца. В этом методе удалось удовлетворительно объяснить качественные особенности спектров многих координационных соеди-не]шй, как, например, тетраэдрических окси-анионов переходных металлов и других комплексов. [c.49]

    Так, карбонильная грушха, напримр, может быть представлена классической, резонансной формулами, в виде формул о зарядовым распределением или резонанснши стрелками, в виде распределенных электронных облаков метода МО ЛКАО, в виде протонирован-ной формы (в случае кислотного квталязв) иди гидроксилированной (основной катализ).  [c.55]

    Ато.м азота имеет на внешнем слое трн неспаренных электрона (15 25 2р ) поэтому атомы азота образуют двухатомную мо-, 1екулу N2 с тремя ковалентными связями. По методу МО ЛКАО кратность связи в молекуле равна трем N0 [/С/С(а,) (о ) (л,) (л,,) (о,.), что объясняет ее химическую инертность. При комнатной температуре азот не реагирует нн с металла.мн, ин с неметаллами, за исключением лития, который медленно соединяется с азотом с образованием нитрида. При [ агреваннн азот реагирует со многими металлами, например с магнием, титаном, алюминием, а также с неметаллами водородом, кремнием и бором, < )бра (уя нитриды. [c.160]


Библиография для Метод МО ЛКАО: [c.352]   
Смотреть страницы где упоминается термин Метод МО ЛКАО: [c.580]   
Смотреть главы в:

Курс квантовой химии -> Метод МО ЛКАО

Локализация и делокализация в квантовой химии атомы и молекулы в основном состоянии -> Метод МО ЛКАО


Общая химия (1984) -- [ c.170 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ возможностей методов МО ЛКАО. Сравнение неэмпирических и полуэмпирических. расчетов

Возможности и ограничения методов МО ЛКАО

Двухцентровая задача в методе ЛКАО

Использование симметрии в методе ЛКАО

Качественные аспекты метода МО ЛКАО

Коэффициенты при атомных функциях в методе ЛКАО и эффективные заряды на атомах

ЛКАО

Линейная комбинация атомных орбит ЛКАО метод

Матричные элементы в методе ЛКАО

Матричные элементы для трехмерного кристалла в методе ЛКАО

Матричный элемент секулярного уравнения метода МО ЛКАО

Метод МО ЛКАО в приближении нулевого дифференциального перекрывания

Метод ССП МО ЛКАО. Полуэмпирические методы квантовой химии

Метод ЭО ЛКАО и вычисление параметров в законах дисперсии

Метод атомных орбит ЛКАО

Метод линейной комбинации атомных орбиталей ЛКАО

Метод молекулярных орбиталей в приближении линейных комбинаций атомных орбиталей (МО ЛКАО)

Метод орбиталей ЛКАО

Методы МО ЛКАО, учитывающие валентные электроны

Многоатомные системы в одноэлектронной теории и идея метода ЛКАО

Молекула Н в методе МО ЛКАО Ковалентная связь

Молекула Н2 в методе МО ЛКАО. Основное состояние. Потенциальная кривая. Химическая связь

Молекула Н2 в методе МО ЛКАО. Расчет энергии и волновой функции по вариационному методу

Молекула Н2Т в методе МО ЛКАО. Отталкивательное состояние

Неэмпирические методы ССП МО ЛКАО. Базисные функции

Обоснование метода ЛКАО

Обработка результатов расчетов электронной структуры методом МО ЛКАО

Описание сольватного комплекса методом МО ЛКАО

Основные недостатки простого метода ЛКАО — МО

Полуэмпирические методы МО ЛКАО

Приближение ССП МО ЛКАО (метод Рутаана)

Приближенное описание молекулярной орбитали в методе МО ЛКАО

Приложение прямого вариационного метода Ритца к решению уравнений Хюккеля, Хартри или Фока (вариант МО ЛКАО)

Применение метода MQ ЛКАО к молекулам от Li2 до

Проблема открытых оболочек в методе ССП МО ЛКАО Ограниченный, неограниченный и расширенный методы Хартри — Фока

Расчет зонной структуры в методе ЛКАО

Расчет молекулы водорода по методу МО ЛКАО

Строение молекул. Метод молекулярных орбиталей. Приближение ЛКАО

Уравнение Шредингера, вариационный принцип, методы Метод ССП МО ЛКАО. Учет электронной корреляции

Элементы квантовой химии. Теория химической связи, метод МО ЛКАО



© 2025 chem21.info Реклама на сайте