Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Агрегаты молекулярные

    При математическом моделировании химико-технологических процессов принято выделять в структуре моделей иерархические уровни микроуровни или молекулярный уровень, макроуровень (или уровень) малого объема, рабочей зоны аппарата, аппарата в целом и агрегата [3]. Большинство задач, связанных с разработкой физических методов интенсификации процессов, необходимо рассматривать на уровне малого объема, хотя в некоторых специфических случаях должен быть проведен анализ и на молекулярном уровне. Естественно, что полное решение требует дальнейшего перехода и на более высокие уровни с целью разработки аппаратуры. [c.7]


    Рассмотрим некоторые экспериментальные данные о свойствах агрегатов, состоящих из небольшого числа молекул воды. Наиболее изучены, разумеется, димеры. Для них мы располагаем не только термодинамическими, но и структурными данными. Так, были изучены отклонения молекулярного пучка паров воды в сильном электрическом поле [361] и вращательные переходы в димере воды (путем облучения молекулярного пучка в микроволновом диапазоне [362]). В результате удалось выяснить, что димеры воды имеют линейную структуру расстояние между атомами кислорода Яоо = 298 им, угол между связью 0Н---0 (этот угол близок к 180°) и биссектрисой угла Н—О—И молекулы акцептора равен 57°. Что касается энтальпии образования димеров (Н20)2, то различные экспериментальные методы дают довольно отличающиеся друг от друга результаты (табл. 8.1). [c.133]

    Наличие химической азбуки — знаков (символов) химических элементов — позволило ввести для всех химических индивидов химические формулы, отражающие их состав. При существовании химического индивида в атомной или молекулярной форме его химическая формула обозначается химическим знаком элемента с индексом, указывающим число атомов в атомной совокупности (единичный индекс не указывается), например благородные газы — Не, Ке, Аг, Кг, галогены — Га, С12, Вг,, Ха, белый фосфор — Р4. Если же химический индивид входит в состав атомного ассоциата или агрегата, ему приписывают химическую формулу с единичным индексом. [c.11]

    При возникновении в клетке ряда стабильных белковых поверхностей новые поверхности с иной специфичностью связывания могут создаваться в результате объединения двух или более индивидуальных белков путем нековалентных взаимодействий. Для клеток характерно такое объединение глобулярных белков в более крупные функциональные белковые агрегаты молекулярная масса многих белковых агрегатов достигает [c.148]

    Так, на крупнотоннажном агрегате синтеза аммиака при резком сбросе большого количества газа на факельную установку произошло разрушение молекулярного затвора и головки факельного ствола, предназначенного для сжигания газов и газообразного аммиака, сбрасываемых в период пуска, остановки и неполадок при работе производства. [c.219]

    Под зародышем кристалла понимается минимальный агрегат молекул кристаллизующегося вещества, расположенных в позиции, соответствующей их размещению в молекулярной решетке кристалла, который способен противостоять рассеивающему действию молекул растворителя и обладающий при данном состоянии раствора тенденцией к дальнейшему росту за счет отложения на его поверхности кристаллизующегося вещества [33]. [c.69]


    Исследование устойчивости дисперсии ПА в растворах различных электролитов проводили методом поточной ультрамикроскопии. При рН = 2 и рН = 3 в широком интервале концентраций КС1 (от 1-10 2 до 3-10 М) дисперсия ПА является агрегативно устойчивой. При концентрации 5-10 М при рН = 2 в системе наблюдается обратимая агрегация (степень агрегации ш = 1,7). Из расчетов энергии взаимодействия частиц по теории ДЛФО следует, что при концентрациях электролита 1 1, превышающих 1-10 моль/л, на всех расстояниях молекулярные силы преобладают над ионно-электростатическими. Таким образом, наблюдаемое отсутствие агрегации частиц вплоть до концентраций КС1 5-10 моль/л может быть объяснено тем, что реальная потенциальная яма не достигает достаточной глубины, необходимой для образования агрегатов. Это, очевидно, связано с существованием ГС воды у поверхности частиц ПА, что обусловливает возникновение структурной составляющей расклинивающего давления. [c.183]

    В высоконаполненных системах под действием молекулярных сил возникает сцепление одной частицы с другой, самопроизвольно образуются агрегаты из частиц и сложные пространственные структуры. [c.140]

    Сегрегация и ее воздействие на химические превращения и процессы переноса особенно проявляются в системах с повышенной вязкостью, а также там, где реакции протекают с высокими скоростями. Образование молекулярных агрегатов характерно для многих процессов получения высокомолекулярных соединений. Так, сложной совокупностью физико-химических явлений отличается гетерофазная полимеризация, при которой образующийся полимер выделяется из первоначально гомогенной системы в виде новой конденсированной фазы с соответствующими морфологическими особенностями и возможным протеканием элементарных реакций в нескольких фазах [12, 13]. Примером может служить полимеризация винилхлорида, которая протекает в три стадии вначале процесс идет в гомогенной мономерной фазе на второй (наиболее продолжительной) стадии полимеризация протекает в двух фазах — мономерной и полимер-мономерной, а на третьей стадии — вновь в одной фазе (полимер-мономерной). При этом процесс сопровождается потоками массы и тепла в глобулярных образованиях (полимерных частицах), размеры которых увеличиваются в ходе реакции за счет поступления реагентов из сплошной мономерной фазы. [c.26]

    Значительно сложнее обстоит дело с механической деструкцией полимеров, имеющей особое значение в гидравлических системах, трансмиссиях и других агрегатах, работающих при относительно низких температурах. Испытание минеральных масел, загущенных полиизобутиленом молекулярной массы 20 000—24 000, в трансмиссиях автомобилей показало, что эти масла малоустойчивы к механической деструкции. Поэтому подбирать полимерную присадку к маслу следует в зависимости от конкретных условий работы масла в агрегате. Возможность снижения механической де- [c.142]

    Причины таких значительных расхождений в величинах молекулярных весов асфальтенов многочисленны н разнообразны. Методы подготовки асфальтенов и определения пх молекулярных весов весьма значительно влияют на величину молекулярного веса. Химическая природа нефти, пз которой выделены асфальтены, низкая растворимость, сложность их структуры и склонность к образованию агрегатов коллоидной природы, а также характер растворителя, применяемого прп этом, также сказываются на результатах определения молекулярных весов. Все этп факторы приводят к тому, что растворы (особенно концентрированные) асфальтенов не подчиняются законам идеальных растворов. [c.501]

    На прочность структуры наполненной системы оказывает влияние форма частиц, которая, в свою очередь, зависит от молекулярной структуры сырья коксования, от природы надмолекулярных структур и их упорядоченности, качества сырого и прокаленного коксов, типа размольного агрегата. При дроблении сырых коксов структура их мало влияет на форму образующихся частиц. [c.91]

    При одном и том же содержании углеродных атомов в молекуле наиболее высокой температурой плавления обладают нормальные алканы, где дисперсионному взаимодействию подвергаются все углеродные атомы соседних молекул. С разветвлением структуры молекул такая возможность вследствие их иной ориентации понижается, что объясняет более низкую температуру кристаллизации. В твердом состоянии молекула алкана расположена упорядоченно, образуя кристаллы различной структуры, преимущественно большие агрегаты достаточно гибких кристаллов. Процесс кристаллизации складывается из двух стадий стадия образования центров кристаллизации (или зародышей) и стадия роста этих центров. Вторая стадия кристаллизации — многоступенчатый процесс, который по различным причинам (например, вследствие возникновения механических напряжений) может останавливаться на любой промежуточной стадии. Монокристаллы образуются только в особых условиях. Обе стадии кристаллизации сильно зависят от температуры. Понижение температуры благоприятствует образованию зародышей кристаллизации, но в то же время уменьшает молекулярную подвижность, а вместе с ней и скорость роста кристаллов. Поэтому температурная зависимость скорости кристаллизации проходит через максимум. Большинство алканов имеет несколько аллотропических модификаций, кристаллизуясь в гексагональной, триклинной, моноклинной и орторомбической формах. Некоторые [c.190]


    Дальнейшее усложнение химической организации материи происходит при взаимодействии атомных и молекулярных частиц, ведущем к образованию более сложных совокупностей — молекулярных ассоциатов и агрегатов. Важно отметить, что ассоциаты существуют главным образом в газообразном или жидком состояниях, а агрегаты — в твердом. [c.9]

    На схеме ( ) приведены последовательные этапы усложнения химической организации материи (естественно, что приведенная схема является одновременно и фрагментом общей структ ы организации материи, т. е. продолжением схемы ). Из схемы (2) видно, что молекулярные ассоциаты образуются из гомоядерных или гетеро-ядерных молекул, в то время как атомные ассоциаты образуются из атомных частиц, минуя второй, молекулярный уровень. Образование атомных агрегатов может происходить уже по двум независимым механизмам либо непосредственно из атомных частиц (минуя два уровня), либо за счет взаимодействия атомных ассоциатов. Наиболее характерными примерами атомных агрегатов являются атомные и металлические кристаллические решетки  [c.9]

    Образование молекулярных агрегатов также происходит по двум механизмам либо из молекулярных частиц, либо за счет взаимодействия молекулярных ассоциатов. Примерами молекулярных агрегатов могут служить молекулярные и ионные кристаллические решетки (с. 10). Отметим, что гомоядерные молекулы и возникающие из них ассоциаты склонны к образованию только молекулярных [c.9]

    Так, например, молекулы воды, существующие в виде изолированных молекулярных частиц при температурах 400°С, по мере охлаждения превращаются в ассоциаты (НгО) , значение п в которых растет тем больше, чем ниже температура. При температуре t < 100 °С ассоциаты укрупняются настолько, что образуют жидкую фазу — воду. Наконец, при температурах (<0°С начинают формироваться агрегаты, свидетельством чего является образование твердой фазы — льда, который характеризуется уже совершенно новыми свойствами, присущими конденсированному состоянию. Таким образом, по мере усложнения химической формы существования материи в ряду [c.10]

    Самоассоциация между ионными парами ведет к образованию агрегатов, например димеров, трпмеров или квадруплетов. Такая ассоциация энергетически выгодна и часто наблюдается в неполярной среде, если растворы не бесконечно разбавлены. Ассоциация становится измеримой уже при таких низких концентрациях, как 0,001 моль/л. Например, криоскопическая степень ассоциации (отношение экспериментально найденной молекулярной массы к формульной) для тиоцианата тетра-н-бутиламмония в бензоле составляет 2,5 при концентрации 0,0013 моля на 1000 г растворителя, увеличивается до 31,9 при 0,281 моля на 1000 г растворителя и снова несколько снижается при более высоких концентрациях (22,7 при 0,753 моля на 1000 г растворителя) [25]. Такая ассоциация ионных пар оказывает очень сильное влияние на экстракцию солей из водной фазы в органическую (разд. 1.3.1). Степень ассоциации зависит от катиона, аниона, растворителя и концентрации. Тримеры одновалентных ионов являются заряженными частицами и проводят электрический ток таким же образом, как и ионные пары, содержащие многовалентные ионы. [c.19]

    Помимо молекулярной формулы вещества одной из наиболее полезных величин при определении структуры органических веществ является молекулярная масса. По величине молекулярной массы вещества во многих случаях можно сделать вполне квалифицированные заключения о его молекулярной формуле. Классическим способом определения молекулярной массы в течение длительного времени был метод Раста (понижение температуры замерзания растворов). Однако в настоящем издании описание Метода Раста опущено, так как этот метод не дает точных результатов для довольно широкого круга органических соединений. Для очень большого числа органических веществ удобно получать молекулярные массы с помощью метода масс-спектрометрии (разд. 3.5.2). Однако этот метод может оказаться доступным да-, леко не во всех учебных лабораториях. Простым методом, позволяющим получить сведения о молекулярной массе веществ, является осмометрия (разд. 3.5.1). Однако следует опасаться получения ошибочных слишком высоких значений молекулярной массы вследствие склонности определяемого вещества к образованию молекулярных агрегатов. Молекулярные массы или величины, находящиеся с ними в простых кратных отношениях, можно определить на основе эквивалентов нейтрализации или чисел омыления. Ввиду того что эти показатели связаны с наличием специфических функциональных групп (кислотных или аминогрупп и сложноэфирных групп соответственно), их определение описано в гл. 6. Для некоторых классов органических соединений применение масс-спектрального анализа затруднительно, и поэтому более целесообразно применять другие методы определения молекулярной массы. [c.31]

    Усовершенствование технологии производства масла применением эффективных процессов очистки, осуществлением молекулярной конверсии молекул нефти, синтезом новых масел, позволяет существенно улучшить некоторые эксплуатационные параметры. Весьма значительно свойства масел могут быть улучшены добавлением в базовое масло присадок. Масло, улучшенное присадками, называется компаундированным или легированным маслом blended oil, ompounded oil, formulated oil). Варьированием состава компонентов базового масла и композиций присадок разработчики смазочных материалов могут создать масла, отвечающие разнообразным требованиям производителей механизмов и оборудования, а также формировать широкий ассортимент смазочных материалов с дифференцированными свойствами для решения многообразных, иногда весьма специфических и даже противоречивых, задач смазывания двигателей и агрегатов трансмиссии. [c.24]

    Действительно, дальнейшее исследование полимера мышьяка (сальварсана), полиакриламида и сополимера метилметакрилата и метакриловой кислоты показало, что эти полимеры в разбавленных растворах образуют вторичные агрегаты — молекулярные пачки, состоящие из нескольких нараллёльно соединенных развернутых цепей [48]. Для сальварсана и полиакриламида наблюдалось образование геометрически правильных структур в виде прямолинейно ограниченных молекулярных пачек (фото84). Видимые на микрофотографиях резкие повороты пачек можно объяснить высокой степенью упорядоченности содержащихся в них молекул, что приводит к возникновению в пачках больших напряжений за счет теплового движения. Эти [c.254]

    Тиреоглобулин содержит, кроме того, иодированные производные тирозина и углеводы (галактозу, маннозу, а также клюкозамин), т. е. является глюкопротеидом. Молекулярная масса этого белка очень высока — 600 ООО молекула его состоит из десяти пептидных цепей и включает около 600 аминокислот. Молекулы тирео-глобулина склонны образовывать крупные скопления — агрегаты, молекулярная масса которых доходит до 17 000 000. [c.151]

    При возникновении в клетке ряда стабильных белковых поверхностей новые поверхности с иной специфичностью связывания могут создаваться в результате объединения двух или более индивидуальных белков путем нековалентных взаимодействий. Дая клеток характерно такое объединение глобулярных белков в более крупные функциональные белковые агрегаты молекулярная масса многих белковых агрегатов достигает 1 млн и более, хотя молекулярная масса типичной полипептидной цепи составляет всего лишь 40000-50000 (приблизительно 300-400 аминокиатот), размер лишь немногих полипептидов втрое превышает эту среднюю величину. [c.148]

    Парофазные ингибиторы применяются для защиты машин, аппаратов и других металлических изделий во время их эксплуатации в воздушной атмосфере, при транспортировке и хранении. Парофазные ингибиторы вводятся в контейнеры, в упаковочные материалы или помещаются в иепосредст)зенной близости от работающего агрегата. Благодаря достаточно высокой упругости паров, летучие ингибиторы достигают границы раздела металл — воздух и растворяются в пленке влаги, покрывающей металла. Далее они адсорбируются из раствора на поверхности металла. Тормозящие эффекты в этом случае подобны тем, какие наблюдаются при применении жидкофазных ингибиторов. В качестве профазных ингибиторов используются обычно амины с небольшим молекулярным весом, в которые введены соответствующие группы, например НОз или СОа. В связи с особенностями использования парофазных ингибиторов к инм предъявляются повышенные требования в отношении их токсичности. [c.509]

    Коксовые отложения имеют сложную природу, которая может меняться в зависимости от условий. В некоторых случаях, особенно при относительно низких температурах, эти отложения представляют собой неопределенного состава полимеры с высокой молекулярной массой. В процессе каталитического крекинга образуются отложения [3.15] в виде крупных агрегатов многоядерных ароматических молекул с включениями сконденсированных систем ароматических колец, содержащих прочно адсорбированные продукты реакции. Проведенные методом ретгеноструктурного анализа исследования отложений кокса, образовавшихся при 400-500°С, показали, что значительная их часть находится в графитоподобном состоянии. Тем не менее, даже такой кокс может содержать значительное количество водорода [3.16]. [c.63]

    Свсжеполучеиные коагуляты во многих случаях способны вновь переходить в состояние золя. Такой изотермический переход коагулят-> золь называют пептизацией, а вызывающие его вещества — п е п т и з а т о р а м п. Пептизаторы являются стабилизаторами дисперсных систем и могут быть веществами как ионной (электролиты), так и молекулярной природы. Адсорбируясь на пгизерхности первичных частиц, пептизаторы ослабляют взаимодействие между ними, что приводит к распаду агрегатов и переходу коагулята в состояние золя. Пснтизацию часто наблюдают при промывании дистиллированной водой находящихся на фильтре свежеполученных осадков гидроксидов и сульфидов металлов. Промывание дистиллированной водой уменьшает концентрацию электролитов, что приводит к изменению структуры двойного [c.338]

    Из трех мопекул, обсуждавшихся в предыдущем разделе, только СН4 имеет электронную конфигурацию замкнутой валентной оболочки. При обычных те.мпературах и давлениях ВеНз, а также ВН3 используют свои вакантные валентные орбитали для образования более крупных молекулярных агрегатов. Гидрид бериллия при нормальных условиях представляет собой твердое вещество, в котором атомы водорода обобществляют [c.557]

    Весьма важным для установления границ аналогии является характер движения частиц в нсевдоожиженном слое. В термостатированной капельной жидкости ее состояние определяется пульсационным движением молекул. В однородном псевдоожиженном слое механизм диффузии твердых частиц подобен молекулярному . При псевдоожижении газом твердые частицы также совершают нульсационные перемещения , но с увеличением скорости газа начинает доминировать движение не отдельных частиц, а их агрегатов > , что аналогично движению турбулентных вихрей в капельной жидкости. Вихревой механизм переноса в нсевдоожиженном слое обусловлен движением газовых пузырей и граничными эффектами. Вблизи поверхностей и деталей (даже в отсутствие пузырей) нарушается равномерность распределения скоростей ожижающего агента и возникает направленная циркуляция твердого материала, аналогично конвективным токам в нетермостатированном сосуде с капельной жидкостью. Следует подчеркнуть, что граничные эффекты в псевдоожиженном слое выражены резче, чем в капельной жидкости. [c.495]

    Элементы этих групп достаточно широко распространены в природе. Практически все представители их найдены в нефтях, причем содержание N3, К, Са, Мд достаточно высоко и достигает порядка 10- —10 % [923], а в золе нефтей на эти элементы приходится до 15—20% веса. Несхмотря на их широкую представительность, сведений о содержащих эти элементы органических соединениях очень мало. Это связано с тем, что ще-иочными и щелочноземельными элементами представлен основной катионный состав пластовых вод, их ионы с трудом отмываются от нефти и могут находиться в ионном равновесии с входящими в нефть веществами кислотной природы. Большинство исследователей приходят к выводу, что щелочные и щелочноземельные металлы присутствуют в нефтях в форме солей нефтяных кислот, фенолятов и тиофеноля-тов как в виде простых монофункциональных соединений, так и в виде составных частей крупных иолифуикциональных молекулярных агрегатов, смол и асфальтенов. Найдено, например, что 92% их в нефти С-1 (Калифорния) присутствует в форме легко гидролизуемых нефтерастворимых соединений [76]. [c.171]

    Химическая формула сложного вещества отражает, помимо его элементного состава, количественные соотношения между числом атомов различных элементов в молекуле, например вода — Н2О, оксид фосфора (V) — Р2О5, сахароза — С,2Н220,, и т. д. Для твердых веществ, представляющих собой молекулярные ассоциаты или агрегаты, в химических формулах учитывается простейшее сочетание их атомов, например ЫаС1. [c.11]

    Возможность применения в трансмиссиях автомобилей загущенных масел проверялавь путем проведения специальных эксплуатационных испытаний. Маловязкое масло (Vlao = 4,13 сст), загущенное 3% полиизобутилена молекулярного веса 24 ООО до вязкости = 15,6 сст, подвергается в коробках передач и ведущих мостах автомобилей ЗИЛ-151 и ГАЗ-63 весьма интенсивной механической деструкции (табл. 7. 30). В отдельных агрегатах вязкость масла уменьшалась дэ 5,4—5,6 сст, а молекулярный вес полиизобутилена снижался до 4000—12 500. [c.430]

    СОСТОИТ ИЗ большого числа структурных групп, находящихся на различном уровне сольватирующей и десольватирующей энергии. В первом приближении можно использовать упрощенное представление о составе битума, чтобы развить суждение о строении битума с точки зрения его коллоидной природы, которая определяется растворимостью составляющих компонентов. Исходя из этого упрощенного представления были развиты теоретические положения о строении битума [29]. Так, например, высказывалось предположение, что битумы представляют собой растворы асфальтенов в углеводородах отношение вязкости асфальтенов к вязкости растворителя рассматривалось как функция концентрации асфальтенов и температуры. При 120° С и выше асфальтены, ао-видимому, находятся в молекулярно-диспергированном состоянии, но при более низких температурах они образуют ассоциированные агрегаты. Физико-химические свойства битума зависят от концентрации асфальтенов и типа углеводородов-растворителей. Системы с богатым содержанием асфальтенов не обладают ньютоновскими свойствами, в то время как нефтп считаются ньютоновскими жидкостями. [c.197]

    Нефтяные дисиерсныс системы в целом являются лолидис-иерсными и характеризуются некоторыми функциями распределения по размерам. Можно вводить функцию распределения по-разному, выбпрая соответствующий параметр. Это может быть линейный размер, объем частиц, число молекул, образующих частицу, молекулярная масса всего агрегата. Если Xi — значение этого параметра, а f(x) — функция распределения ио этому параметру, то f(x)dx — вероятность того, что величина х лежит в пределах от xi до Хг- -< х- Выражение [c.105]

    Высокая дисперсность асфальтенов создает избыток поверхностной энергии, вследствие чего такие системы термодинамически неустойчивы и стремятся к расслоению на две фазы. При недостаточном стабилизирующем действии окружающей дисперсионной среды частицы асфальтенов предварительно ассоциируются, сцепляясь под действием молекулярных сил в агрегаты, что приводит к потере кинетической устойчивости системы. В значительной степени свойства 1ефтяных остатков как коллоидных систем зависят от степени дисперсности асфальтенов, а в случае крекинг-остатков также от степени дисперсности карбенов и карбоидов. В обычных условиях коллоидная система, состоящая из дисперсной фазы (асфальтены, механические примеси) и дисперсионной среды (высокомолекулярные углеводороды, смолы), термодинамически и кинетически неустойчива тем не менее, расслоение на фазы происходит медленно, что обусловлено в основном свойствами самой системы. Коагуляцию асфальтенов могут вызвать изменение состава дисперсионной среды, изменение температуры, механические воздействия и другие факторы. [c.56]

    Под мицеллой ПАВ понимают агрегат дифильных молекул, J иoфильныe группы которых обращены к соответствующему рас- творителю, а лиофобпые соединяются друг с другом, образуя ядро мицеллы. Число молекул, составляющих мицеллу, называют числом агрегации, а общую сумму молекулярных масс молекул мицеллы, или произведение массы мицеллы, на число Авогадро,— миц. У лярной массой. Обратимость лиофильных мицеллярных систем заключается в том, что при разбавлении растворов мицеллы. распадаются на молекулы нли ионы. [c.294]

    Размер элементарных частиц каолинита гораздо больше. В элементарной глинистой час-рице атомы связаны между собой химическими связями. Элементарные частицы под влиянием молекулярных сил сцепления соедрщяются друг с другом, образуя первичные глинистые частицы. Последние с помощью различных природных цементов образуют агрегаты, которые и преобладают в сухих природных глинах. Степень дисперсности глин в значительной мере зависит от их химического и минералогического состава. Так, наибольшей степенью дисперсности обладают бентонитовые глины, удельная поверхность которых составляет 400—900 м /г, в то время как для каолинитовых глин она равна всего 20— 30 м /г. [c.12]


Смотреть страницы где упоминается термин Агрегаты молекулярные: [c.330]    [c.81]    [c.452]    [c.492]    [c.199]    [c.207]    [c.186]    [c.234]    [c.4]    [c.316]    [c.57]    [c.99]    [c.68]    [c.29]   
Курс неорганической химии (1963) -- [ c.250 ]

Курс неорганической химии (1972) -- [ c.224 ]




ПОИСК







© 2025 chem21.info Реклама на сайте