Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Азотная кислота водные растворы, свойства

    По влиянию на кислотно-основные свойства растворенного вещества растворители подразделяют на нивелирующие и дифференцирующие. В нивелирующих растворителях сила некоторых кислот, оснований и других электролитов становится примерно одинаковой, а в дифференцирующих — разной. Уравнивание силы электролитов в нивелирующих растворителях имеет не всеобщий характер нельзя считать, например, что в нивелирующих растворителях все кислоты становятся сильными или все слабыми. Многие минеральные кислоты — хлорная, хлороводородная, бромоводородная, азотная и др. в водном растворе Диссоциированы нацело с образованием Н3О+ как продукта взаимодействия кислоты с водой. Вода оказывает нивелирующее действие на силу сильных кислот. [c.35]


    Химические свойства. Разбавленная азотная кислота проявляет все свойства кислот (см. стр. 141). Она относится к сильным кислотам. В водных растворах диссоциирует  [c.230]

    Свойства и реакции 2-аминоэтансульфокислоты и ее производных. Как отмечено выше, таурин обладает слабо выраженными кислотными свойствами. Определение константы ионизации дало различные величины, причем два более новых значения [170] составляют 1,8-10" и 5,77-10 . Водные растворы таурина имеют диэлектрическую постоянную выше, чем у воды, причем она увеличивается пропорционально концентрации раствора 171]. Аналогичное действие оказывают другие солеобразные соединения, в которых положительные и отрицательные ионы, присутствуя в одной молекуле (двухполярные ионы), создают постоянные диполи. В кислом растворе таурин чрезвычайно устойчив к действию окисляющих агентов. Он не вступает в реакцию с серной кислотой, кипящей азотной кислотой, царской водкой или сухим хлором [172]. Однако при сплавлении таурина с углекислым натрием и азотнокислым калием сера полностью превращается [c.134]

    Химические свойства. Азотная кислота относится к числу наиболее сильных кислот. В водных растворах она полностью диссоциирует на ионы Н и N0 . Проявляет все свойства кислот. Молекула НМОз имеет плоское строение. Валентность азота в НЫОз равна четырем  [c.205]

    Получение азота и нитрида магния.-2. Получение аммиака, его взаимодействие с водой и хлористым водородом. 3. Равновесие в водном растворе аммиака. 4. Восстановительные свойства аммиака. 5. Гидролиз солей аммония. 6. Качественная реакция на ЫН -ион. 7. Получение оксида и диоксида азота и исследование их свойств. 8. Оксид азота(П1) и соли азотистой кислоты. 9. Окислительные свойства азотной кислоты. 10. Окислительные свойства нитратов. 11. Термическое разложение нитратов. 12. Контрольный опыт [c.7]

    Солц азотной кислоты — нитраты — известны почти для всех металлов. Большинство из них бесцветны и хорошо растворяются в воде. В кислых водных растворах нитраты являются более слабыми окислителями, чем азотная кислота, а в нейтральной среде вообще не обладают окислительными свойствами. Сильными окислителями они становятся в расплавах, а также при температуре разложения с выделением кислорода. Термическое разложение нитратов щелочных и щелочно-земельных металлов протекает с образованием нитритов, например  [c.265]


    Однако влияние этих равновесий на силу кислот сказывается только в концентрированных растворах. В разбавленных растворах, в которых определяются термодинамические константы, реакция (IV) обычно проходит до конца, а реакция (V) практически еще не начинается. Напрймер, в очень концентрированных водных растворах молекулы азотной кислоты ассоциированы, при добавлении воды ассоциаты уступают место продуктам взаимодействия азотной кислоты с водой состава HN0з H20 и НКОз-ЗНзО одновременно изменяется степень ассоциации воды. При дальнейшем разбавлении эти продукты диссоциируют па сольватированные ионы. Если при этом диэлектрическая проницаемость раствора невелика (смеси диоксана с водой), то образуются ионные молекулы — ионные двойники. Наличие таких ионных двойников наряду с молекулами обнаруживается на основании различия между константами диссоциации, определенными из электрохимических и оптических данных. Ионные молекулы, как и обычные, не переносят тока, но их оптические свойства близки к свойствам свободных ионов. [c.295]

    Специфические свойства азотной кислоты рассмотрены в курсе неорганической химии. Теперь ознакомимся с окислительными свойствами азотной кислоты более подробно. Может возникнуть вопрос чем объясняется характер взаимодействия азотной кислоты с металлами, т. е. почему в этих реакциях вместо водорода преимущественно выделяются различные оксиды азота и даже азот и аммиак (При действии наиболее активных металлов на разбавленные водные растворы азотной кислоты происходит и частичное выделение водорода.) Все это связано с исключительно сильными окислительными свойствами атома азота со степенью окисления - -5, который, окисляя атомы металлов, изменяет свою степень окисления до +4, +2, +1 и даже до О и —3 (табл. 30, с. 136). Рассмотрим примеры. [c.135]

    Известно, что азотная кислота обладает окислительными свойствами. Водные растворы нитратов не обладают окислительной способностью, но довольно хорошо гидролизуются с образованием свободной минеральной кислоты. Агрессивность азотной кислоты усиливается с повышением ее концентрации и температуры . [c.17]

    Разбавленная азотная кислота проявляет все свойства кислот. Она относится к сильным кислотам. В водных растворах диссоциирует  [c.196]

    Хлорноватая кислота НСЮз более устойчива я суп№ств в виде водных растворов [с концентрацией не выше 50% (мае.)]. По степени диссоциации она приближается к соляной и азотной кислотам, т. е. может считаться сильной кислотой. В растворах у хлорноватой кислоты окислительные свойства выражены хорошо, а у ее солей гораздо слабее. [c.398]

    Из металлов только золото, платина, осмий, иридий, ниобий, тантал и вольфрам, устойчивы к действию азотной кислоты. Некоторые металлы (например, Ге, А1, Сг) пассивируются концентрированной азотной кислотой. Окислительными свойствами обладают и водные растворы азотной кислоты. [c.407]

    В теории Бренстеда принимается, что результатом протолитической реакции является образование в водных растворах и воде иона Н3О+. Его существование с большой достоверностью показано исследованиями методами рентгеноструктурного анализа, протонного магнитного резонанса и ИК-спектроскопии твердых моногидратов сильных минеральных кислот — азотной, хлорной, серной и соляной. Получить свидетельство о существовании иона Н3О+ в воде значительно труднее вследствие того, что характеристические свойства Н3О+ и Н2О сходны. К тому же, ион оксония образует гидраты, что затрудняет его идентификацию. Проявлению характеристических свойств также препятствует очень малая средняя продолжительность жизни Н3О+, равная 2-10- с. [c.592]

    После сталей к числу наиболее распространенных материалов можно отнести алюминий и его сплавы. Алюминий обладает способностью к самопассивации в окислительных средах. Он стоек в воде и водных растворах солей, во влажных газах при pH растворов от 4 до 9, в концентрированных серной и азотной кислотах, во многих органических кислотах. Однако алюминий разрушается в средах, не обладающих окислительными свойствами. Легирование алюминия титаном повышает его способность к пассивации (рис. 53). [c.71]

    Полиэтилен высокой плотности (низкого и среднего давления/ отличается от полиэтилена низкой плотности более высокими прочностью, плотностью, жесткостью и температурой плавления. Это обусловлено различием в молекулярной массе и степени разветвленности макромолекул. Разветвления затрудняют плотную упаковку макромолекул и уменьшают степень кристалличности. В ннзкомолекулярном разветвленном полиэтилене всегда наряду с кристаллической имеется и аморфная фаза. Соотношение этих фаз и определяет физико-механические свойства полимера. Являясь неполярным углеводородом, полиэтилен обладает высокой химической стойкостью. Он не смачивается водой и другими полярными жидкостями, устойчив к действию водных растворов кислот, щелочей и солей (однако при температуре выше 60° в серной и азотной кислотах быстра растворяется). Масла, жиры, керосин и другие нефтяные углеводороды не действуют на полиэтилен, причем полимер высокой плотности отличается большей стойкостью. [c.323]


    Свойства водных растворов азотной кислоты [c.21]

    Из металлов только золото, платина, осмий, иридий, ниобий, тантал и вольфрам устойчивы к действию азотной кислоты. Некоторые металлы (например. Ре, А1, Сг) пассивируются концентрированной азотной кислотой. Окислительными свойствами обладают и водные растворы азотной кислоты. Обычно процесс восстановления HNOз протекает в нескольких параллельных направлениях и в результате получается смесь различных продуктов восстановления. Природа этих продуктов, их относительное содержание в смеси зависят от силы восстановителя, концентрации азотной кислоты и температуры. Рис. 48 иллюстрирует относительное содержание продуктов восстановления азотной кислоты железом в зависимости от ее концентрации. [c.263]

    Представления о кислотах и основаниях, основанные на теории электролитической диссоциации, применимы лишь при условии, что веш,ества реагируют в водном растворе. Однако эти представления не объясняют процессов, протекающих в неводных растворах. Так, например, если хлорид аммония в водном растворе ведет себя как соль (диссоциирует на ионы NH и С1 ), то в жидком аммиаке он проявляет свойства кислоты — растворяет металлы с выделением водорода. Мочевина OiNHa) в жидком аммиаке проявляет свойства кислоты, в безводной уксусной кислоте — свойства основания, а в водном растворе она нейтральна. Как основание ведет себя азотная кислота, растворенная в жидком фтороводороде или в безводной серной кислоте. [c.189]

    Соль эта используется при производстве органических красителей. Сама азотистая кислота известна только в разбавленных водных растворах. По силе она лишь немного превышает уксусную кислоту. Наиболее характерны для нее сильно выраженные окислительные свойства, причем восстанавливается она в большинстве случаев до N0. С другой стороны,.действием сильных окислителей азотистая кислота может быть окислена до азотной. Типичные примеры характерных для HNO2 окислительно-восстановительных процессов приводятся ниже  [c.416]

    Нитраты хорошо растворимы в воде они устойчивее азотной кислоты и поэтому в водных растворах окислительными свойствами не обладают. При нагревании нитраты разлагаются тем полнее, чем пассивнее металл, ионы которого входят в их состав. Нитраты очень активных металлов, расположенных в ряду стандартных электродных потенциалов левее Mg, отщепляют кислород и переходят в нитриты  [c.261]

    Титан — тугоплавкий металл серебристого цвета. Температура плавления 1668 4°С. Как отмечалось, его коррозионная стойкость является одним из наиболее ценных свойств. При комнатной температуре титан не- растворяется в минеральных кислотах, водных растворах щелочей он нерастворим и в горячих водных растворах щелочей. Растворяется при нагревании в разбавленных соляной и серной кислотах с образованием соединений Ti (III), окрашенных в фиолетовый цвет. Эти соединения являются неустойчивыми при взаимодействии с кислородом воздуха Ti (III) постепенно окисляется до Ti (IV), соединения которого бесцветны 2Ti l3 + 2H l + /гОг ТЮЦ+НгО. Для ускорения окисления титана к сернокислому или солянокислому растворам, полученным после растворения титана, добавляют какой-либо окислитель, например азотную кислоту. [c.119]

    Систематически описана экстрагируемость многих нитратов металлов из азотной кислоты и растворов нитрата аммония в диэтило-вып эфир, диэтилцеллозольв, пентаэфир и метилизобутилкетон [200]. Довольно высокие коэффициенты распределения получены в том случае, когда водный раствор содержал кроме экстрагируемого нитрата 2—3" моля неэкстрагируемого нитрата или 3—4 моля частично экстрагируемого (высаливатель). В попытке окоррелировать высаливаюш ий эффект с природой и свойствами высаливателя пока не достигнуто большого прогресса [201—203]. Были опубликованы некоторые новые данные но гидратации нитратов металлов в эфирах [176, 204]. [c.41]

    Действительно, спектроскопические исследования пикратов замещенных солей аммония показало, что существуют ионные пары с водородной связью. По Дэвису, в паре ВН+...А-, где В — онова-ние, а А — кислота, протон смещается от А к В по мере того, как возрастает сила основания и уменьшается сила кислоты. В конечном счете при полной диссоциации получаются сольватйрованный протон и соответствующий анион. Это означает, что сила кислоты зависит от природы растворителя. Вещество, которое в данном растворителе проявляло себя как типичная кислота, в другом может оказаться очень слабой кислотой или даже обнаружить свойства основания. Так, например, азотная кислота в водном растворе является сильной кислотой благодаря реакции [c.249]

    Сульфиды металлов растворяются в кислотах-окислителях (например,, в азотной кислоте). Сульфиды мышьяка (III) и (V) растворяются в водном растворе аммиака и карбонате аммония с образованием тио- и окситиосолей. Сульфиды мышьяка (III) и (V), сурьмы(III) и (V) и олова(IV) растворимы в щелочи и карбонате натрия с образованием тио- и окситиосолей. Сульфиды мышьяка(П1) и (V), сурь-мы(1П) и (V), олова(П) и (IV) и растворимы в полисульфиде аммония с образованием тиосолей, при этом полисульфид аммония является окислителем для мышьяка(1П), сурьмы(П1) и олова(И). Все эти сульфиды, кроме сульфида олова (И), растворяются и в сульфиде аммония с образованием соответствующих тиосолей. Эти свойства используют для отделения мышьяка, сурьмы и олова от сульфидов других катионов. [c.560]

    Реакции азотной кислоты (рис. 22.7). В водном растворе азотная кислота обладает свойствами, типичными для неорганических кислот. Металлы реагируют, образуя нитраты. Так как азотная кислота является окислителем, водород образуется очень редко. Только магний и кальций реагируют с холодной разбавленной HNO3, выделяя водород  [c.475]

    Свойства. Безводная азотная кислота HNO3 представляет собой бесцветную жидкость, желтеющую при хранении, с температурой кипения 82,6°С и температурой замерзания (плавления) —41,6°С. Смешивается с водой в любых отношениях. В водном растворе HNO3 — сильная кислота, практически полностью диссоциирует на катионы водорода и нитрат-ионы N03  [c.152]

    За счет высокой коррозионной стойкости детали арматуры из титана (корпуса, втулки, штоки, сальники, золотники) противостоят коррозии в 15—26 раз дольше, чем нержавеющие стали (Х18Н9Т). Коррозионные свойства сплава АТ-3 испытаны во многих средах, в том числе в среде, содержащей раствор серной кислоты при 350 °С. В течение длительного времени при испытаниях в условиях радиации на образцах сплава не было признаков коррозии, а также коррозионного растрескивания под напряжением. Высокой коррозионной стойкостью сплав обладает в едком натре, в водном растворе аммиака, в азотной, хлорной, уксусной кислотах и средах, содержащих серу при 50 °С. [c.74]


Смотреть страницы где упоминается термин Азотная кислота водные растворы, свойства: [c.275]    [c.328]    [c.336]    [c.150]    [c.150]    [c.1065]    [c.310]    [c.280]    [c.388]    [c.150]    [c.91]    [c.204]    [c.469]    [c.116]    [c.101]    [c.290]    [c.208]   
Справочник азотчика (1987) -- [ c.23 ]




ПОИСК





Смотрите так же термины и статьи:

Азотная кислота свойства

Кислоты pH в водных растворах

Кислоты свойства

Растворов свойства

Свойства водных растворов ПАВ

Физические свойства водных растворов азотной кислоты



© 2025 chem21.info Реклама на сайте