Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Трансляция элементов симметрии

    Поэтому предпочтительно не обсуждать этот вопрос, а оговорить способ проведения кристаллографических координатных осей для решеток каждой сингонии по отдельности. Соответствующие требования сформулированы в табл. 2 в колонке Выбор осей . Так, например, в пространственных группах, относящихся к ромбической сингонии, всегда содержащих взаимно перпендикулярные поворотные, винтовые или инверсионные оси второго порядка, координатные оси направляются параллельно этим элементам симметрии. Следовательно, в группах ромбической сингонии кристаллографическая координатная система всегда ортогональна. То же относится, естественно, и к группам с более высокой симметрией — средней и высшей категории. Наоборот, в группах моноклинной сингонии ось симметрии 2, 2ь или 2 (т. е. т) фиксирует направление только одной из кристаллографических осей. Две другие располагаются в узловой сетке решетки, перпендикулярной оси симметрии (параллельной плоскости симметрии). Выбор узловых рядов этой сетки, принимаемых за координатные оси, вообще говоря, неоднозначен. Требуется лишь, чтобы наименьшие трансляции вдоль этих рядов образовали пустой параллелограмм (параллелограмм, в площади которого нет дополнительных узлов). [c.29]


    Трансляции размножают элементы симметрии кристаллического класса в семейство параллельных элементов симметрии (см. рис. II.9) и преобразуют поворотные оси симметрии в винтовые, а зеркальные плоскости — в плоскости скользящего отражения. В результате из каждого кристаллического класса образуется несколько пространственных групп. Общее число пространственных групп 230. Это значит, что помимо одного непрерывного и изотропного пространства Евклида существует 230 типов дискретных и анизотропных периодических пространств, представителями которых являются кристаллы. В числе 230 [c.60]

    Соответствующий трансляции элемент симметрии дисконтинуума называется переносом, трансляционным вектором (или бивектором). Его можно было бы назвать вектором идентичности. [c.63]

    Укажем теперь некоторые элементы симметрии с бесконечной кратностью. К ним относятся трансляция (а ) и сочетания трансляции с поворотом или отражением винтовая ось (и ), сочетающая [c.43]

    Трансляции размножают элементы симметрии в бесконечные периодические семейства эквивалентных элементов (рис. II.9) и подразделяют бесконечное трехмерное пространство на идентичные, параллельно расположенные и примыкающие друг к другу элементарные области (ячейки), имеющие форму параллелепипедов. Для описания пространственной группы достаточно указать элементы симметрии в одной элементарной ячейке. [c.50]

    Кристаллы имеют дополнительные элементы симметрии — Трансляционные. Трансляцией называется такое пространственное преобразование, при котором перемещения всех точек одинаковы. Наличие трансляционной симметрии у кристалла приводит к образованию энергетических зон электронов, что, в свою. очередь, определяет многие свойства кристалла, в частности его проводимость. [c.73]

    Хорошо известно, что требование групповой замкнутости операций симметрии приводит к определенным ограничениям в возможных комбинациях и взаимных ориентациях закрытых элементов симметрии конечных фигур. Те же ограничения действуют и по отношению к открытым элементам симметрии бесконечных фигур. Но помимо этого взаимодействие трансляций с другими операциями симметрии приводит к дополнительным ограничениям двух типов 1) трансляционная группа ограничивает возможный набор осей симметрии разных порядков 2) любые операции симметрии, кроме простой [c.21]

    Те же ограничения действуют и по отношению к открытым элементам симметрии бесконечных фигур. Но помимо этого взаимодействие трансляций с другими операциями симметрии приводит к дополнительным огра- [c.23]


    В последнем ряду показаны две другие пространственные группы, тоже относящиеся к моноклинной сингонии. Здесь снова принята У-установка. Не анализируя всех особенностей размещения элементов симметрии, обратим внимание лишь на следующее. В обоих случаях весь комплекс кружков, расположенных вокруг вершин элементарной ячейки (вместе со знаками + и — и пометками-запятыми), переносится как целое в центр проекции. Это означает, что в решетке имеется трансляция, равная половине длины диагонали основания ячейки. Обе группы в отличие от двух предшествующих имеют не примитивную, а базоцентрированную трансляционную подгруппу. [c.41]

    Обозначение а) -т т. Этот узор имеет самую высокую симметрию, достигаемую за счет комбинации оси трансляции с поперечными и продольными плоскостями симметрии. В этом описании двойные оси перпендикулярны плоскости чертежа и порождены другими элементами симметрии. Альтернативное обозначение - (а) 2 ш. [c.368]

    Если особая плоскость ленты неполярна, то лента двусторонняя. В целом ленты имеют 31 класс симметрии [2], из которых 7 характеризуют только бордюры. Рис. 8-11, а показывает бордюр, порожденный переносом мотива из листьев. Рис. 8-11,6 является двумерной лентой, характеризуемой плоскостью скользящего отражения. Она содержит перенос на половину периода трансляции и отражение в плоскости чертежа. Листовые узоры на рис. 8-11 параллельны узорам из черных треугольников. Новый элемент симметрии иллюстрирует рис. 8-И,л это винтовая ось второго порядка, 2,. Соответствующее преобразование представляет собой перенос на половину периода трансляции и поворот на 180". Все классы симметрии лент (их число равно 31), составляющие [c.368]

    Вернемся к винтовым осям. На рис. 8-18 демонстрируется бесконечный анион с винтовой осью 10, [4]. Наиболее важным применением одномерных пространственных групп в химии является их использование для полимерных молекул [5]. Рис. 8-19 иллюстрирует структуру и элементы симметрии в протяженной молекуле полиэтилена. Период трансляции, или идентичности, показан на рис. 8-19, а. Это расстояние между двумя углеродными атомами, разделенными третьим атомом. [c.373]

    Трехмерные решетки пространственные группы. Как в случае одно- и двумерных узоров, мы рассмотрим сначала различные возможные решетки, на которых базируются узоры, и затем возможные комбинации элементов симметрии, которые могут сочетаться с решетками. Существует 14 трехмерных решеток, совместимых с типами поворотной симметрии, которыми Может обладать трехмерный повторяющийся узор. Это—14 решеток Бравэ (рис. 2.7 и табл. 2.1). Повторяющиеся расстояния (единичные трансляции) вдоль осей определяют элементарную Ячейку, и на рис. 2.7 элементарная ячейка каждой решетки выделена сплошными линиями. [c.57]

    Всего существует 17 классов симметрии односторонних плоских сеток (см., например, [2]). Они изображены на рис. 8-21 аналогично иллюстрации семи классов симметрии, присущих бордюрам (см. рис. 8-9). Приведены также наиболее важные элементы симметрии и координатные обозначения классов симметрии. Первая буква (р или с) в этом обозначении относится к группе трансляций. Следующие три позиции несут информацию о наличии различных элементов симметрии m - плоскость симметрии, 3-плоскость скользящего отражения, 2, 3, 4 или 6-поворотные оси. Цифра 1 или пустое место указывают на отсутствие элемента симметрии. Представления классов симметрии на рис. 8-21 в некотором смысле были навеяны иллюстрациями, содержащимися в книге Элементарная кристаллография Бургера [7]. Наряду с чисто геометрическими конфигурациями на рис, 8-21 представлены 17 венгерских вышитых узоров. Краткое описание их происхождения дано в пояснении к рисункам [8]. [c.377]

    Наконец, единственный элемент симметрии, который осталось рассмотреть, - плоскость симметрии скользящего отражения. Она вызывает скользящее отражение в результате отражения и переноса. Трансляционная компонента Т плоскости скользящего отражения представляет собой половину обычной трансляции решетки в направлении скольжения. Скольжение вдоль оси а равно Т=(1/2)а и называется плоскостью скользящего отражения а. Подобным образом диагональное скольжение может иметь (1/2) а + (1/2) с. Различные возможные плоскости скользящего отражения приведены в табл. 9-3. [c.421]

    Например, молекулы фенола, соединенные водородными связями, образуют спирали с винтовыми осями третьего порядка, как показано на рис. 9-52. Однако действие этой оси не распространяется на весь кристалл, и она не присутствует в пространственной группе, характеризующей кристалл фенола [51]. Другой пример-это толан (дифенилацетилен), С Н —С=С—С Н . Как показано на рис. 9-53, молекулы А и В в толане связаны поворотной осью второго порядка и трансляцией, и эти элементы симметрии не содержатся в пространственной группе кристалла [51]. [c.466]

    Операции симметрии в случае кристалла осуществляют над точками, осями или плоскостями, которые носят название элементов симметрии, что приводит к трансляции атомов или молекул в позиции с идентичным окружением. [c.392]

    Эта повторяемость схематически может быть описана при помощи трансляций — симметрических преобразований, характеризующих параллельный перенос всей структуры. Элементом симметрии, отвечающим новому симметрическому преобразованию, будет ось трансляции. Для точной характеристики периодичности кристалла необходимо указать направление трансляций и их величину. Надо всегда иметь в виду, что в литературе термин трансляция используется как для обозначения симметрического преобразования, так и элемента симметрии. [c.53]


    Многообразие элементов симметрии, с которым необходимо считаться при изучении внутренней структуры кристаллов, возрастает. Кроме тех элементов симметрии, которые характеризуют внешнюю форму кристаллов, здесь появляются новые. Важнейшим из них является трансляция (т. е. параллельный перенос), о которой мы подробно говорили выше (стр. 53). [c.64]

    Структура кристалла — постройка бесконечная. Элементы симметрии в таких системах в одной точке не пересекаются кроме того, в ней появляются элементы симметрии, невозможные в конечных фигурах. Дополнительно к известным нам элементам симметрии в структурах кристаллов могут быть трансляции (перенос), плоскости скользящего отражения и винтовые [c.48]

    Рассматривая двумерные узоры, мы можем выявить две важные особенности, характерные и для трехмерных узоров, представляющих для нас наибольший интерес. Во-первых, точка инверсии (точка отражения) заменяется на линию зеркального отражения (рис. 2.2, б) и помимо этого появляются еще два новых элемента симметрии, включающие перенос и вращение. Линия скользящего отражения сочетает операцию отражения от прямой с переносом на половину расстояния между узлами решетки (рис. 2.2, в). Необходимо, чтобы перенос был равен именно половине трансляции, так как точка должна повториться на расстоянии, равном трансляции решетки. Другой элемент симметрии — л-кратный поворот — приводит к появлению набора точек, связанных вращением на угол 3607 и расположенных по вершинам правильного л-угольника. (При рассмотрении плоских узоров следует помнить, что двумерные образования могут перемещаться только в плоскости и не имеют третьего измерения. Элемент симметрии, который приводит к появлению набора л точек, симметрически связанных друг с другом в плоскости, строго говоря, следовало бы назвать точкой поворота . Однако для трехмерного случая такую точку поворота легче представить себе как пересечение оси симмет- [c.54]

    Из символа пространственной группы Рпта (читается как Р—п—ш—а ) следует, что решетка этого типа относится к примитивной решетке элементами симметрии этой группы являются и-скольже-ние, перпендикулярное оси а, зеркальная плоскость, перпендикулярная оси Ь, и а-скольжение, перпендикулярное оси с. Условия, используемые при записи символов такого вида, и вытекающая из них информация сведены в табл. 17.1. В первом столбце приведены семь различных кристаллических систем наряду с симметриями точечных групп элементарной ячейки (т. е. симметрией, которой они обладали бы, если бы не было трансляции). В столбце характеристическая симметрия приведены те существенные элементы симметрии, которые делают кристалл единственным в своем роде по отношению к приведенным точечным группам. В столбце положение в символе точечной группы описаны условия записи этого символа и указан порядок (первичный, вторичный, третичный), в котором элементы симметрии перечислены в символе. В приведенном выше примере Рпта Р—символ решетки, а п, т и а соответственно первичный, вторичный и третичный символы. [c.367]

    На рис. II.8 показаны части бесконечных однократно-перио-дических структур (бордюров). Бордюр в виде непрерывной цепочки бегущих фигур (рис. II.8,й) обладает только трансляционной симметрией. Здесь нет особых точек симметрии, в которые можно было бы поместить начало одномерной решетки. В этом отношении все точки бордюра эквивалентны. На рис. II.8 б, изображена непрерывная гармоническая кривая, периодичность которой указывают особые точки вершины, впадины и два семейства пулевых значений функции, различающиеся знаком производной. Гармоническая кривая, помимо трансляционной симметрии, имеет еще два семейства центров симметрии и два семейства зеркальных линий отражений, отмеченных стрелками, направленными соответственно вверх и вниз. Такой же симметрией обладает непрерывная кривая (рис. И.8,в), показывающая периодическое изменение прозрачности одномерной дифракционной решетки. Ири наличии (помимо трансляцил) дополнительных элементов симметрии начало трансляции удобно поместить в одном из них, что позволяет подразделить элементарную ячейку на эквивалентные области. Операции отражения, инверсии и трансляции позволяют получить из области ячейки, равной в случаях рис. II.7, б и в 1/4 периода, всю неограниченную гребенку или синусоиду. [c.48]

    Трансляция является одной из операций симметрии для бесконечного кристаллического пространства. Элементами симметрии будут центры инверсии (отнечаюнще отражению в точке), оси симметрии 2-4 и 6-го порядков и плоскости симметрии. Наряду с поворотными осями и плоскостями зеркального отражения, характерными и для конечных фигур, в бесконечном пространстве возникают новые элементы симметрии, которые можно рассматривать как сумму поворотов или отражений и трансляций. Такими элементами симметрии являются винтовые оси и плоскости скользящего отражения. [c.59]

    В соответствии с соотношением (1) для задания ре шетки кристалла в общем случае необходимо указать три векторных параметра а, Ь, с или шесть скалярных-размеры трансляций а, 6, с и углы между их направлениями а, р, V (а —угол между осями У и 2 р —между X я 1] V —между X я У, рис. 1, в). Эти шесть величин называются параметрами решетки, а построенный на них параллелепипед — параллелепипедом повторяемости. Если оси X, У, 1 выбраны в соответствии с определенными, принятыми в кристаллографии правилами (см. гл. I, 10), то параллелепипед повторяемости называют элементарной ячейкой кристалла. Забегая несколько вперед, отметим также, что наличие в структуре нетрансля-ционных элементов симметрии определенным образом [c.7]

    Как уже отмечалось, для задания решетки кристалла в общем случае необходимо указать три векторных параметра а, Ь, с или шесть скалярных размеры трансляций а, Ь, с вдоль выбранных осей и углы между их направлениями а, р, V- Нетрансляционные элементы симметрии, фиксируя углы между осями и уравнивая размеры трансляций, уменьшают число независимых параметров решетки. Можно показать, что эти взаимосвязи между параметрами решетки имеют одинаковый характер для всех пространственных групп (и соответственно [c.28]

    Бесконечная цепь атомов углерода (рис. 8-5) имеет конечную толщину. На самом деле это трехмерная конструкция с периодичностью только в одном направлении. Таким образом, она имеет одномерную пространственную группу симметрии (С ) и подобна бесконечно длинному стержню. Стержень обладает особой осью, но не имеет особой плоскости. Все типы осей симметрии (ось трансляции, простая поворотная, зеркально-поворотная, винтовая) могут совпадать с осью стержня. Винтовая ось может быть не только осью второго порядка, как в случае лент, но и любого другого. Конечно, эти элементы симметрии, за исключением простой поворотной оси, могут характеризовать стержень, только если он на самом деле бесконечно вытянут. С точки зрения симметрии труба, винт и различные лучи в такой же степени являются стержнями, как и стебли растений, векторы или винтовые лестницы. Чтобы для их описания применять пространственные группы, необходимо допустить их бесконечные размеры. Реальные же предметы конечны, поэтому, изучая их симметрию, лучше рассматривать только некоторую их часть, оставляя их концы вне поля зрения и мысленно продолжая их до бесконечности. Часть лестницы, обладающей винтовой симметрией, изображена на рис. 8-13. Трудновообразимая винтовая лестница, представленная на рис. 8-14, кажется бесконечной. По этой причине к ней может быть применена пространственная группа симметрии. [c.371]

    Эквивалентные ионы связаны трансляциями а = Ь = с вдоль ребер куба, или (й + )/2, (а -(- <")/2, (Ь + с)/2 вдоль граненых диагоналей. Все это соответствует гранецентрированной кубической решетке (Р). Структура самосовмещается не только под действием перечисленных выше трансляций, но и за счет операций симметрии точечной группы тЗт (или по-другому обозначенной как 6/4). Элементы точечной группы показаны на рис. 9-20, в. Элементы симметрии этой группы пересекаются в центрах всех атомов, и, таким образом, они становятся элементами симметрии для всей элементарной ячейки и соответственно для кристалла в целом. [c.430]

    Молекулы А и В в кристалле толана (дифенилацетилена) связаны поворотиой осью второго порядка и трансляцией. Эти элементы симметрии не принадлежат к трехмерной пространственной группе кристалла толана [51]. [c.467]

    Для кристаллических решеток существуют и более сложные элементы симметрии Они появляются при их комбинировании с трансляциями Так, при комбинировании плоскости симметрии с трансляцией появляется так называемая плоскость скольэящего отражения, а при комбинировании оси симметрии с трансляцией — винтовые оси [c.236]


Смотреть страницы где упоминается термин Трансляция элементов симметрии: [c.104]    [c.362]    [c.373]    [c.384]    [c.49]    [c.51]    [c.141]    [c.30]    [c.362]    [c.431]    [c.432]    [c.538]    [c.65]    [c.120]    [c.649]    [c.173]   
Структуры неорганических веществ (1950) -- [ c.104 ]




ПОИСК





Смотрите так же термины и статьи:

Действие трансляции на непараллельные её вектору элементы симметрии

Действие трансляции на элементы симметрии. Координаты точек и линий в элементарной ячейке

Симметрия трансляция

Симметрия, элементы

Систематические погасания, обусловленные элементами симметрии, включающими трансляцию

Сложение элементов симметрии. 3. Трансляция

ЭЛЕМЕНТЫ ТЕОРИИ СИММЕТРИИ ДИСКОНТИНУУМА Пространственная решётка кристалла. Понятие об элементарной ячейке yl Трансляция

Элементы симметрии, включающие трансляцию



© 2025 chem21.info Реклама на сайте